Transgenic Research

, Volume 5, Issue 4, pp 223–234 | Cite as

Transgenesis in rats: Technical aspects and models

  • Béatrice Charreau
  • Laurent Tesson
  • Jean-Paul Soulillou
  • Christine Pourcel
  • Ignacio Anegon


The production of transgenic rats by DNA-microinjection into fertilizer ova has now become an established procedure, although fewer than 20 lines have been described during the last 5 years. Overall, transgenic rats remain more difficult to produce than transgenic mice, but satisfactory yields have been obtained by several laboratories. A review of the methods used to generate transgenic rats shows considerable variation between different laboratories, particularly in choice of strain, superovulation protocols and the use of embryo culture before reimplantation. In some instances, the production of transgenic rats has provided data that are new and relevant, compared to data obtained in mice bearing the same transgene. Models have been developed for human diseases such as hypertension and autoimmunity, and applications have been found in the study of carcinogenesis and in pharmacological research. Transgenic rat technology also opens up interesting perspectives for transplantation research, in which microsurgery is an essential procedure. Intensive research is in progress in several laboratories to produce rat embryonic stem (ES) cell lines, but existing lines have not participated in germ line formation a prerequisite for their use in gene knock out experiments.


transgenic animals rat DNA embryonic stem cells xenotransplantation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anzai, M., Nakagata, N., Matsumoto, K., Takahash, Y. and Miyata, K. (1994) Cryopreservation ofin vitro fertilized embryos from transgenic rats by ultrarapid freezing.Exp. Anim. 43, 247–50.Google Scholar
  2. Armstrong, D.T. and Opavski, M.A. (1988) Superovulation of immature rats by continuous infusion of follice-stimulating hormone.Biology Reprod. 39, 511–8.Google Scholar
  3. Azimzadeh, A., Wolf, P., Fabre, M., Odeh, M., Charreau, B., Thibadeau, K., Soulillou, J.P. and Anegon, I. (1996) Rat-to-primate heart xenograft hyperacute rejection: model assessment, immunological and histological analysis.Transplantation in press.Google Scholar
  4. Bader, M., Zhao, Y., Sander, M., Lee, M. and Bachmann, J. (1992) Role of tissue renin in the pathophysiology of hypertension in TGR(mREN2)27.Hypertension 19, 681–6.Google Scholar
  5. Baker, H.J., Lindsey, J.R. and Weisbroth, M. (1979)The Laboratory Rat. Vols. 1 and 2. New York, Academic Press.Google Scholar
  6. Bonnerot, C., Rocancourt, D., Briand, P., Grimber, G. and Nicolas, J.F. (1987) A β-galactosidase hybrid protein targeted to nuclei as marker for developmental studies.Proc. Natl Acad. Sci. USA 84, 6795–9.Google Scholar
  7. Bradley, A., Evans, M.J., Kaufman, M.H. and Robertson, E. (1984) Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines.Nature 309, 255–6.Google Scholar
  8. Breban, M., Hammer, R.E., Richardson, J.A. and Taurog, J.D. (1993) Transfer of the inflammatory disease of HLA-B27 transgenic rats by bone marrow engraftment.J Exp Med 178, 1607–16.Google Scholar
  9. Brinster, R.L., Chen, H.Y., Trumbauer, M.E., Yagle, M. and Palmiter, R.D. (1985) Factors affecting the efficiency of introducing foreign DNA into mice by microinjecting eggs.Proc. Natl Acad. Sci USA 82, 4438–42.Google Scholar
  10. Canseco, R.S., Sparks, A.E.T., Page, R.L., Russell, C.G., Johnson, J.L., Velander, W.H., Pearson, R.E., Drohan, W.N. and Gwazdauskas, F.C. (1994) Gene transfer efficiency during gestation and the influence of co-transfer of non-manipulated embryos on production of transgenic mice.Transgenic Res. 3, 20–5.Google Scholar
  11. Cappechi, M.R. (1989) Altering the genome by homologous recombination.Science 244, 1288–92.Google Scholar
  12. Carr, I., Carr, J. and Dreher, B. (1981) Lymphatic metastasis of mammary adenocarcinoma: an experimental study in the rat with a brief review of the literature.Invasion Metastasis 1, 34–53.Google Scholar
  13. Cavard, C., Zider, A., Vernet, M., Bennoun, M., Saragosti, S., Grimber, G. and Briand, P. (1990)In vivo activation by ultraviolet rays of the human immunodeficiency virus type 1 long terminal repeat.J. Clin. Investigation 86, 1369–74.Google Scholar
  14. Charlton, B.H.A. and Garrisson Fathman, C. (1994) Mechanisms of transplatation tolerance.Annu. Rev. Immunol. 12, 707–34.Google Scholar
  15. Charreau, B., Cassard, A., Tesson, L., Le Mauff, B., Navenot, J.M., Blanchard, D., Soulillou, J.P. and Anegon, I. (1994) Protection of rat endothelial cells from primate complement-mediated lysis by expression of human CD59 and/or decay-accelerating factor.Transplantation 58, 1222–30.Google Scholar
  16. Charreau, B., Tesson, L., Buscail, J., Soulillou, J.P. and Anegon, I. (1996) Analysis of human CD59 tissue expression directed by the CMV IE-1 promoter in transgenic rats.Transgenic Res. in press.Google Scholar
  17. Chisari, F., Klopchin, K., Moriyama, T., Pasquinelli, C., Dunsford, H., Sell, S., Pinkert, C., Brinster, R. and Palmiter, R. (1989) Molecular pathogenesis of hepatocellular carcinoma in hepatitis B virus transgenic mice.Cell 59, 1145–56.Google Scholar
  18. Depamphilis, M.L., Herman, S.A., Martinez-Salas, E., Chalifour, L., Wirak, D., Cupo, D. and Miranda, M. (1988) Microinjecting DNA into mouse ova to study DNA replication and gene expression and to produce transgenic animals.Biotechniques 6, 662–80.Google Scholar
  19. Doetschman, T.C., Williams, P. and Maeda, M. (1988) Establishment of hamster blastocyst-derived embryonic-stem cells.Developmental Biology 127, 224–7.Google Scholar
  20. Dunn, C.S., Mehtali, M., Houdebine, L.M., Gut, J.P., Kirn, A. and Aubertin, A.M. (1995) Human immunodeficiency virus type 1 infection of human CD4 transgenic rabbits.J. General Vir. 76, 1327–36.Google Scholar
  21. Dycaico, M.J., Provost, G.S., Kretz, P.L., Ransom, S.L., Moores, J.C. and Short, J.M. (1994) The use of shuttle vectors for mutation analysis in transgenic mice and rats.Mutat. Res. 307, 461–78.Google Scholar
  22. Efrat, S., Surana, M. and Fleischer, N. (1991) Glucose induces insulin gene transcription in a murine pancreatic beta-cell line.J. Biol. Chem. 266, 11141–3.Google Scholar
  23. Evans, M.J. and Kaufman, M.H. (1981) Establishment in culture of pluripotential cells from mouse embryos.Nature 292, 152–6.Google Scholar
  24. Fodor, W.L., Williams, B.L., Matis, L.A., Madri, J.A., Rollins, S.A., Knight, J.W., Valander, W. and Squinto, S.P. (1994) Expression of a functional human complement inhibitor in a transgenic pig as a model for the prevention of xenogeneic hyperacute organ rejection.Proc. Natl Acad. Sci. USA 91, 11153–7.Google Scholar
  25. Fukamizu, A., Seo, M., Hatae, T., Yokoyama, M. and Nomura, T. (1989) Tissue-specific expression of the human renin gene in transgenic mice.Biochem. Biophys. Res. Commun. 165, 826–32.Google Scholar
  26. Furth, P.A., St. Onge, L., Böger, H., Gruss, P., Grossen, M., Kistner, A., Bujard, H. and Hennighausen, L. (1994) Temporal control of gene expression in transgenic mice by a tetracycline-responsive promoter.Proc. Natl Acad. Sci. USA 91, 9302–6.Google Scholar
  27. Ganten, D., Wagner, J., Zeh, K., Bader, M., Michel, J.-B., Paul, M., Zimmermann, F., Ruf, P., Hilgenfelt, U., Ganten, U., Kaling M., Bachmann, S., Fukamizu, A., Mullins, J.J. and Murakami, K. (1992) Species specificity of renin kinetics in transgenic rats harboring the human renin and angiotensinogen genes.Proc. Natl Acad. Sci. USA 89, 7806–10.Google Scholar
  28. Gill, T., Kunz, H.W., Misra, D.N. and Cortese Hassett, A.L. (1987) The major histocompatibility complex of the rat.Transplantation 43, 773–85.Google Scholar
  29. Gill, T., Smith, G.J., Wissler, R.W. and Kunz, H.W. (1989) The rat as an experimental animal.Science 245, 269–76.Google Scholar
  30. Gould, N.M. (1986) Inheritance and site of expression of genes controlling susceptibility to mammary cancer in an inbred rat model.Cancer Res. 46, 1199–202.Google Scholar
  31. Greenwald, R.A. and Diamond, H.S., eds (1988)Handbook of Animal Models for The Rheumatic Diseases. Boca Raton, FL, CRC Press.Google Scholar
  32. Grosschedl, R., Weaver, D., Baltimore, D. and Constantini, F. (1984) Introduction of an immunoglobulin gene into the mouse germ line: specific expression in lymphoid cells and synthesis of functional antibody.Cell 38, 647–58.Google Scholar
  33. Günthert, U., Hofmann, M., Rudy, W., Reber, S., Zöller, M., Haubmann, I., Matzku, S., Wenzel, A., Ponta, H. and Herrlich, P. (1991) A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells.Cell 65, 13–24.Google Scholar
  34. Hammer, R.E., Maika, S.D., Richardson, J.A., Tang, J. and Taurog, J. (1990) Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human β2m: an animal model of HLA-B27-associated human disorders.Cell 63, 1099–112.Google Scholar
  35. Harris, A., Pinkert, C., Crawford, M., Langdon, W., Brinster, R. and Adams, J. (1988) The Eμ-myc transgenic mouse: A model for high incidence spontaneous lymphoma and leukemia of early B cells.J. Exp. Med. 167, 353–71.Google Scholar
  36. Heideman, J. (1991) Transgenic rats: a discussion.Bio/Technology 16, 325–32.Google Scholar
  37. Hochi, S., Nonomiya, T., Homma, M. and Yuki, A. (1990) Successful production of transgenic rats.Anim. Biotechnol. 1, 175–84.Google Scholar
  38. Hochi, S.I., Ninomiya, T., Waga-Homma, M., Sagara, J. and Yuji, A. (1992) Secretion of bovine α-lactalbumin into the milk of transgenic rats.Mol. Reprod. Dev. 33, 160–4.Google Scholar
  39. Hogan, B., Constantini, F. and Lacy, E. (1986) Manipulating the Mouse Embryo. Cold Spring Harbor, New York; Cold Spring Harbor Laboratory Press.Google Scholar
  40. Iannaccone, P.M., Taborn, G.U., Garton, R.L., Caplice, M.D. and Brenin, D.R. (1994) Pluripotent embryonic stem cells from the rat are capable of producing chimeras.Dev. Biol. 163, 288–92.Google Scholar
  41. Inoue, A., Yanagisawa, M., Kimura, S., Kasuya, Y., Miyauchi, T., Goto, K. and Masaki, T. (1989) The human endothelin family: three structurally and pharmacologically distinet isopeptides predicted by three separate genes.Proc. Natl Acad. Sci. USA 86, 2863–7.Google Scholar
  42. Jeunemaitre, X., Soubrier, F., Kotelevtsev, Y.V., Lifton, R.P. and Williams, C.S. (1992) Molecular basis of human hypertension: role of angiotensinogen.Cell 71, 169–80.Google Scholar
  43. Kajiwara, N., Sugiyama, F., Goto, Y., Sugiyama, Y., Fukamizu, A., Uehara, S., Sugimura, K., Murakami, K., Hokao, R., Akahori, F. and Yagami, K. (1993) Production of transgenic rats using pregnant and pseudopregnant rats prepared at a breeding farm.Jikken Dobutsu 42, 463–6.Google Scholar
  44. Lathe, R. and Mullins, J.J. (1993) Transgenic animals as models for human disease — report of an EC study group.Transgenic Res. 2, 286–99.Google Scholar
  45. Magee, J.C. and Platt, J.L. (1994) Xenograft rejection-molecular mechanisms and therapeutic implications.Therapeutic Immunology 1, 45–58.Google Scholar
  46. Matsumoto, K., Kakidani, H., Takahashi, T., Nakagata, N., Anzai, M., Matsuzaki, Y., Takahashi, Y., Miyata, K., Utsumi, K. and Iritani, A. (1993) Growth retardation in rats whose growth hormone gene expression was supporessed by antisense RNA transgene.Mol. Reprod. Dev. 36, 53–8.Google Scholar
  47. Mikkelsen, T., Chapman, B., Din, N., Ingerslev, J., Kristensen, P., Poulsen, K. and Hjorth, J.P. (1992) Expression of a cytomegalovirus IE-1-factor VIII cDNA hybrid gene in transgenic mice.Transgenic Res. 1, 164–9.Google Scholar
  48. Mullins, J.J., Sigmund, C.D., Kane-Haas, C., McGowan, R.A. and Gross, K.W. (1989) Expression of the murine Ren-2 gene in the adrenal gland of transgenic mice.EMBO J. 8, 4065–72.Google Scholar
  49. Mullins, J.J., Peters, J. and Ganten, D. (1990) Fulminant hypertension in transgenic rats harbouring the mouse Ren-2 gene.Nature 344, 541–4.Google Scholar
  50. Nakagata, N. (1993) Production of normal young following transfer of mouse embryos obtained byin vitro fertilization between cryopreserved gametes.J. Reprod. Fert. Steril. 87, 479–83.Google Scholar
  51. Notarianni, E., Laurie, S., Moore, R.M. and Evans, M.J. (1990) Maintenance and differentiation in culture of pluripotential embryonic cell lines from pig blastocysts.J. Reprod. Fert. Suppl. 41, 51–6.Google Scholar
  52. Paul, M. and Böcker, W. (1995) Transgenic rats expressing endothelin genes — new models for the study of endothelin functionin vivo. Submitted.Google Scholar
  53. Paul, M., Wagner, J., Hoffmann, S., Urata, H. and Ganten, D. (1994) Transgenic rats: new experimental models for the study of candidate genes in hypertension research.Annu. Rev. Physiol. 56, 811–29.Google Scholar
  54. Pinckert, C.A. (1994) Transgenic pig models for xenotransplantation.Xeno.2, 10–5.Google Scholar
  55. Plump, A.S., Smith, J.D., Hayek, T., Aalto-Setala, K., Walsh, A., Verstuyft, J.G., Rubin, M. and Breslow, J.L. (1991) Severe hypocholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells.Cell 71, 343–53.Google Scholar
  56. Overbeek, P.A. (1994) Factors affecting transgenic animal production. In Pinkert, C.A., ed.,Transgenic Animal Technology: a Laboratory Handbook. pp. 15–68. San Diego, CA: Academic Press.Google Scholar
  57. Robl, J.M. and Heideman, J.K. (1994) Production of transgenic rats and rabbits. In: Pinkert, C.A. ed.,Transgenic Animal Technology: a Laboratory Handbook. pp. 265–78. San Diego, CA: Academic Press.Google Scholar
  58. Schmidt, E.V., Christoph, G., Zeller, R. and Leder, P. (1990) The cytomegalovirus enhancer: a pan-active control element in transgenic mice.Mol. Cell. Biol. 10, 4406–11.Google Scholar
  59. Sigmund, C.D., Jones, C.A., Kane, C.M., Wu, C., Lang, J.A. and Gross, K.W. (1992) Regulated tissue- and cell-specific expression of the human renin gene in transgenic mice.Circ. Res. 70, 1070–9.Google Scholar
  60. Southard Smith, M., Lechago, J., Wines, D.R., Macdonald, R.J. and Hammer, R.E. (1992) Tissue-specific expression of kallikrein family transgenes in mice and rats.DNA Cell Biology 11, 345–58.Google Scholar
  61. Sukoyan, M.A., Golubitas, A.N., Zhelezova, A.L., Shilov, A.G., Vatolin, S.Y., Maximovsky, L.P., Andreeva, L.E., McWhir, J., Pack, S.D. and Bayborodin, S.I. (1992) Isolation and cultivation of blastocyst derived stem cell lines from American mink (Mustela vision).Mol. Reprod. Dev. 33, 418–31.Google Scholar
  62. Swanson, M.E., Hughes, T.E., St Denny, I., France, D.S., Paterniti, J.R., Jr, Taparelli, C., Gfeller, P. and Bürki, K. (1992) High level expression of human apolipoprotein A-I in transgenic rats raises total serum high density lipoprotein cholesterol and lowers rat apolipoprotein A-I.Transgenic Res. 1, 142–7.Google Scholar
  63. Szabo, T., Free, S.P., Birkhead, H.A. and Gay, P.E. (1969) Predictibility of pregnancy from various signs of mating in mice and rats.Laboratory Animal Care 19, 822–5.Google Scholar
  64. Taketo, M., Schroeder, A.C., Mobraaten, L.E., Gunning, K.B., Hanten, G., Fox, R.R., Roderick, T.H., Stewart, C.L., Lilly, F., Hansen, C.T. and Overbeek, P.A. (1991) FVB/N: an inbred mouse strain preferable for transgenic analysis.Proc. Natl Acad. Sci. USA 88, 2065–9.Google Scholar
  65. Taurog, J.D., Hammer, R.E., Maika, S.D., Sams, K.L., El-Zaatari, F.A.K., Stimpson, S.A. and Schwap, J.H. (1990) HLA-B27 transgenic mice as potential models of human disease. In Egorov, I.K. and David, C.S.Transgenic Mice and Mutants in MHC Research. pp. 268–75. Berlin: Springer-Verlag.Google Scholar
  66. Taurog, J.D., Maika, S.D., Simmons, W.A., Breban, M. and Hammer, R.E. (1993) Susceptibility to inflammatory disease in HLA-B27 transgenic rat lines correlates with the level of B27 expression.J. Immunol. 150, 4168–78.Google Scholar
  67. Taurog, J.D., Richardson, J.A., Croft, J.T., Simmons, W.A., Zhou, M., Fernandez-Sueiro, J.L., Balish, E. and Hammer, R.E. (1994) The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats.J. Exp. Med. 180, 2359–64.Google Scholar
  68. Tronik, D., Dreyfus, M., Babinet, C. and Rougeon, F. (1987) Regulated expression of the Ren-2 gene in transgenic mice derived from parental strains carrying only the Ren-1 gene.EMBO J. 6, 983–7.Google Scholar
  69. Vilotte, J.L., Soulier, S., Stinnakre, M.G., Massoud, M. and Mercier, J.C. (1989) Efficient tissue-specific expression of bovine α-lactalbumin in transgenic mice.Eur. J. Biochem. 186, 43–8.Google Scholar
  70. Walton, E.A., Evans, G. and Armstrong, D.T. (1983) Ovulation response and fertilization failure in immature rats induced to superovulate.Reprod. Fertil. 67, 91–6.Google Scholar
  71. Williamson, R., Lee, Hagaman, J. and Maeda, N. (1992) Marked reduction of high density lipoprotein cholesterol in mice genetically modified to lack apolipoprotein A-I.Proc. Natl Acad. Sci. USA 89, 7134–8.Google Scholar
  72. Young, W.Y., Yuen, B.H. and Moon, Y.S. (1987) Effects of superovulatory doses of pregnand mare serum gonadotropin on oocyte quality and ovulatory and steroid hormone responses in rats.Gamet. Res. 16, 109–20.Google Scholar
  73. Zeng, Q., Carter, D.A. and Murphy, D. (1994a) Cells specific expression of a vasopressin transgene in rats.J. Neuroendocrinol. 6, 469–77.Google Scholar
  74. Zeng, Q., Foo, N.C., Funkhouser, J.M., Carter, D.A. and Murphy, D. (1994b) Expression of a at vasopressin transgene in rat testes.J. Reprod. Fertility 102, 241–81.Google Scholar
  75. Zider, A., Mashour, B., Fergelot, P., Grimber, G., Vernet, M., Hazan, U., Couton, D., Briand, P. and Cavard, C. (1993) Dispensable role of the NF-κB sites in the UV-induction of the HIV-1 LTR in transgenic mice.Nucl Acids Res. 21, 79–86.Google Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • Béatrice Charreau
    • 1
  • Laurent Tesson
    • 1
  • Jean-Paul Soulillou
    • 1
  • Christine Pourcel
    • 1
  • Ignacio Anegon
    • 1
  1. 1.INSERM U437Institut de Transplantation et Recherche en TransplantationNantesFrance

Personalised recommendations