, Volume 47, Issue 4, pp 395–399 | Cite as

Phytoalexin response is elicited by a pathogen (Rhizoctonia solani) but not by a mycorrhizal fungus (Glomus mosseae) in soybean roots

  • P. Wyss
  • T. Boller
  • A. Wiemken
Research Articles


A container system was constructed to study the response of soybean roots to infection by mycorrhizal or pathogenic fungi. The system allows a rapid and synchronous inoculation byGlomus mosseae orRhizoctonia solani. The phytoalexin glyceollin was measured in roots of inoculated and uninoculated plants for a period of 30 days. A significantly increased content of phytoalexin was found inR. solani-infected roots as compared to uninfected control roots. However, there was no difference in the glyceollin contents of the mycorrhizal and the control roots for up to 23 days after inoculation. The accumulation of glyceollin inR. solani-infected roots was not influenced by a subsequent inoculation withG. mosseae. Moreover glyceollin accumulated in mycorrhizal plants to the same extent as in control plants when they were inoculated withR. solani. The two fungi did not mutually influence the course of infection when they were inoculated together.

Key words

VA-mycorrhiza Glycine max glyceollin rhizosphere rhizotron 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Smith, S. E., and Gianinazzi-Pearson, V., A. Rev. Plant Phsyiol. Plant molec. Biol.39 (1988) 221.Google Scholar
  2. 2.
    Schüepp, H., Miller, D. D., and Bodmer, M., Trans. Br. mycol. Soc.89 (1987) 429.Google Scholar
  3. 3.
    Wyss, P., Boller, T., and Wiemken, A., Agric. Ecosyst. Envir.29 (1990) 451.Google Scholar
  4. 4.
    Ebel, J., A.Rev. Phytopath.24 (1986) 235.Google Scholar
  5. 5.
    Ebel, J., and Grisebach, H., Trends biochem. Sci.13 (1988) 23.Google Scholar
  6. 6.
    Darvill, A. G., and Albersheim, P. A., Rev. Plant Physiol.35 (1984) 243.Google Scholar
  7. 7.
    Morandi, D., Bailey, J. A., and Gianinazzi-Pearson, V., Physiol. Plant Path.24 (1984) 357.Google Scholar
  8. 8.
    Dehne, H.-W., and Backhaus, G. F., J. Plant Dis. Prot.93 (1986) 415.Google Scholar
  9. 9.
    Keen, N. T., Phytopathology68 (1978) 1237.Google Scholar
  10. 10.
    Keen, N. T., Sims, J. J., Erwin, D. C., Rice, E., and Partridge, J. E., Phytopathology61 (1971) 1084.Google Scholar
  11. 11.
    Phillips, J. M., and Hayman, D. S., Trans. Br. mycol. Soc.55 (1970) 158.Google Scholar
  12. 12.
    Giovannetti, M., and Mosse, B., New Phytol.84 (1980) 489.Google Scholar
  13. 13.
    Wyss, P., Boller, T., and Wiemken, A., Symbiosis9 (1990) 383.Google Scholar
  14. 14.
    Habereder, H., Schröder, G., and Ebel, J., Planta177 (1989) 58.Google Scholar
  15. 15.
    Werner, D., Mellor, R. B., Hahn, M. G., and Grisebach, H., Z. Naturforsch.40c (1985) 179.Google Scholar
  16. 16.
    Wyss, P., Mellor, R. B., and Wiemken, A., Planta182 (1990) 22.Google Scholar
  17. 17.
    Wyss, P., Mellor, R. B., and Wiemken, A., J. Plant. Physiol.136 (1990) 507.Google Scholar
  18. 18.
    Sprent, J. I., Sutherland, J. M., and De Faria, S. M., in: A Century of Nitrogen Fixation Research, pp. 45–63. Eds F. J. Bergersen and J. R. Postgate. The Royal Society, London 1987.Google Scholar

Copyright information

© Birkhäuser Verlag 1991

Authors and Affiliations

  • P. Wyss
    • 1
  • T. Boller
    • 1
  • A. Wiemken
    • 1
  1. 1.Botanisches Institut der Universität BaselBaselSwitzerland

Personalised recommendations