Experientia

, Volume 47, Issue 4, pp 376–391 | Cite as

Mycorrhizas in ecosystems

  • D. J. Read
Multi-Author Review Structure, Function and Ecology of the Mycorrhizal Symbiosis

Summary

The results of analyses of the distribution, structure and function of ericoid, ecto and vesicular-arbuscular mycorrhizas are used to challenge the conventional view, which was based largely upon studies of isolated plants and excised plant roots under controlled conditions, that the symbiosis is primarily involved in the capture of phosphate ions. In nature, each mycorrhizal type is associated with an ecosystem and soil environment with distinctive characteristics in which selection has favoured the development of a particular range of attributes. These attributes are evaluated and their importance for the individual plant and for the ecosystems in which they occur is assessed. It is concluded that knowledge of the full range of functions of each mycorrhizal type is essential for an understanding of the distribution and dynamics of the ecosystem in which it predominates.

Key words

Ericoid mycorrhiza ectomycorrhiza VA mycorrhiza ecosystem nutrients organic matter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abuarghub, S. M., and Read, D. J., The biology of mycorrhiza in the Ericaceae. XII. Quantitative analysis of individual ‘free’ amino acids in relation to time and depth in the soil profile. New Phytol.108 (1988) 433–441.Google Scholar
  2. 2.
    Abuzinadah, R. A., and Read, D. J., The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. I. Utilization of peptides and proteins by ectomycorrhizal fungi. New Phytol.103 (1986) 481–493.Google Scholar
  3. 3.
    Abuzinadah, R. A. and Read, D. J., The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. III. Protein utilization byBetula, Picea andPinus in mycorrhizal association withHebeloma crustuliniforme. New Phytol.103 (1986) 507–514.Google Scholar
  4. 4.
    Abuzinadah, R. A., and Read, D. J., The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. V. Nitrogen transfer in birch (Betula pendula) grown in association with mycorrhizal and non-mycorrhizal fungi. New Phytol.112 (1989) 61–68.Google Scholar
  5. 5.
    Abuzinadah, R. A., and Read, D. J., Carbon transfer associated with assimilation of organic nitrogen sources by silver birch (Betula pendula Roth). Trees3 (1989) 17–23.Google Scholar
  6. 6.
    Alexander, I., Mycorrhizas in tropical forests, in: Mineral Nutrients in Tropical Forest and Savannah Ecosystems, pp. 169–188. Ed. J. Proctor. Blackwell, Oxford 1989.Google Scholar
  7. 7.
    Alexander, I. J., and Hardy, K., Surface phosphatase activity of Sitka spruce mycorrhizas from a Serpentine site. Soil Biol. Biochem.13 (1981) 301–305.Google Scholar
  8. 8.
    Allen, E. B., and Allen, M. F., Water relations of xeric grasses in the field: interactions of mycorrhizas and competition. New Phytol.104 (1986) 559–571.Google Scholar
  9. 9.
    Allen, M. F., Smith, W. K., Moore Jr., T. S., and Christensen, M., Comparative water relations and photosynthesis of mycorrhizal and non-mycorrhizalBouteloua gracilis H.B.K. Lag. ex Steud. New Phytol.88 (1981) 683–693.Google Scholar
  10. 10.
    Amaranthus, M. P., and Perry, D. A., Interaction between vegetation type and madrone soil inocula in the growth, survival, and mycorrhizal formation of Douglas fir. Can. J. For. Res.19 (1989) 550–556.Google Scholar
  11. 11.
    Augé, R. M., Schekel, K. A., and Wample, R. L., Greater leaf conductance of well-watered VA mycorrhizal rose plants is not related to phosphorus nutrition. New Phytol.103 (1986) 107–116.Google Scholar
  12. 12.
    Augé, R. M., Non-nutritional mycorrhizal enhancement of transpiration. Plant Cell Env. (1991) in press.Google Scholar
  13. 13.
    Axelrod, D. I., Evolution and biogeography of Madrean-Tethyan sclerophyll vegetation. Ann. Mo. bot. Gdn62 (1975) 280–334.Google Scholar
  14. 14.
    Azcon, R., Barea, J. M., and Hayman, D. S., Utilization of rock phosphate in alkaline soils by plants inoculated with mycorrhizal fungi and phosphate-solubilizing bacteria. Soil Biol. Biochem.8 (1976) 135–138.Google Scholar
  15. 15.
    Baath, E., and Söderström, B., Fungal biomass and fungal immobilization of plant nutrients in Swedish coniferous forest soils. Rev. Ecol. Biol. Soil16 (1979) 477–489.Google Scholar
  16. 16.
    Bajwa, R., and Read, D. J., The biology of mycorrhiza in the Ericaceae. IX. Peptides as nitrogen sources for the ericoid endophyte and for mycorrhizal and non-mycorrhizal plants. New Phytol.101 (1985) 459–467.Google Scholar
  17. 17.
    Bajwa, R., Abuarghub, S., and Read, D. J., The biology of mycorrhiza in the Ericaceae. X. The utilization of proteins and the production of proteolytic enzymes by the mycorrhizal endophyte and by mycorrhizal plants. New Phytol.101 (1985) 469–486.Google Scholar
  18. 18.
    Bartlett, E. M., and Lewis, D. H., Surface phosphatase activity of mycorrhizal roots of beech. Soil Biol. Biochem.5 (1973) 249–257.Google Scholar
  19. 19.
    Birch, C. P. D., Development of VA mycorrhizal infection in seedlings in semi-natural grassland turf, in: Proceedings of the First European Symposium in Mycorrhizas, pp. 233–239. Eds V. Gianinazzi-Pearson and S. Gianinazzi. INRA, Paris 1986.Google Scholar
  20. 20.
    Boggie, R., Hunter, R. F., and Knight, A. H., Studies of the root development of plants in the field using radioactive tracers. J. Ecol.46 (1958) 621–639.Google Scholar
  21. 21.
    Bradley, R., Burt, A. J., and Read, D. J., Mycorrhizal infection and resistance to heavy metal toxicity inCalluna vulgaris. Nature292 (1981) 335–337.Google Scholar
  22. 22.
    Bradley, R., Burt, A. J., and Read, D. J., The biology of mycorrhiza in the Ericaceae. VIII. The role of mycorrhizal infection in heavy metal resistance. New Phytol.91 (1982) 197–209.Google Scholar
  23. 23.
    Brownlee, C., Duddridge, J. A., Malibari, A., and Read, D. J., The structure and function of mycelial systems of ecto-mycorrhizal roots with special reference to their role in forming inter-plant connections and providing pathways for assimilate and water transport. Plant Soil71 (1983) 433–443.Google Scholar
  24. 24.
    Brundrett, M. C., Piche, Y., and Peterson, R. L., A developmental study of the early stages in vesicular arbuscular mycorrhiza formation. Can. J. Bot.63 (1985) 184–194.Google Scholar
  25. 25.
    Buwalda, J. G., Growth of clover-rye grass association with vesicular-arbuscular mycorrhizas. N.Z.J. agric. Res.23 (1980) 379–383.Google Scholar
  26. 26.
    Chapin, F.S., The mineral nutrition of wild plants. A. Rev. Ecol. Syst.11 (1980) 233–260.Google Scholar
  27. 27.
    Chu-Chou, M., Mycorrhizal fungi ofPinus radiata in New Zealand. Soil Biol. Biochem.11 (1979) 557–562.Google Scholar
  28. 28.
    Cooper, K. M., and Tinker, P. B., Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas. IV. Effect of environmental variables on movement of phosphorus. New Phytol.88 (1981) 327–339.Google Scholar
  29. 29.
    Coutts, M. P., and Nicoll, B. C., Growth and survival of shoots, roots and mycorrhizal mycelium in clonal Sitka spruce during the first growing season after planting. Can. J. For. Res.20 (1990) 861–868.Google Scholar
  30. 30.
    Crick, J. C., and Grime, J. P., Morphological plasticity and mineral nutrient capture in two herbaceous species of contrasted ecology. New Phytol.107 (1987) 403–414.Google Scholar
  31. 31.
    Cromack, K., Below ground processes in forest succession, in: Forest Succession — Concepts and Applications. Eds D. C. West, H. H. Shugart and D. B. Botkin. Springer, New York 1988.Google Scholar
  32. 32.
    Deacon, J. W., Donaldson, S. J., and Last, F. T., Sequences and interactions of mycorrhizal fungi on birch. Plant Soil71 (1983) 257–262.Google Scholar
  33. 33.
    Dighton, J., and Mason, P. A., Mycorrhizal dynamics during forest tree development, in: Developmental Biology of Higher Fungi. Eds. D. Moore, L. Casselton, D. A. Wood and J. C. Frankland. British Mycological Society Symposium. Cambridge University Press, London 1985.Google Scholar
  34. 34.
    Drew, M. C., Comparison of the effects of a localized supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system, and the shoot in barley. New Phytol.75 (1975) 479–490.Google Scholar
  35. 35.
    Eissenstat, D. M., and Newman, E. I., Seedling establishment near large plants: effects of vesicular-arbuscular mycorrhizas on intensity of plant competition. Funct. Ecol.4 (1990) 95–101.Google Scholar
  36. 36.
    Ellenberg, H., Vegetation Ecology of Central Europe. Cambridge University Press, London 1988.Google Scholar
  37. 37.
    Evans, D. G., and Miller, M. H., Vesicular-arbuscular mycorrhizas and the soil-disturbance-induced reduction of nutrient absorption in maize. I. Causal relations. New Phytol.110 (1988) 67–74.Google Scholar
  38. 38.
    Finlay, R. D., and Read, D. J., The structure and function of the vegetative mycelium of ectomycorrhizal plants. I. Translocation of14C-labelled carbon between plants interconnected by a common mycelium. New Phytol.103 (1986) 143–156.Google Scholar
  39. 39.
    Finlay, R. D., and Read, D. J., The structure and function of the vegetative mycelium of ectomycorrhizal plants. II. The uptake and distribution of phosphorus by mycelial strands interconnecting host plants. New Phytol.103 (1986) 157–165.Google Scholar
  40. 40.
    Finlay, R. D., Ek, H., Odham, G., and Söderström, B., Mycelial uptake, translocation and assimilation of nitrogen from15N-labelled ammonium byPinus cylvestris plants infected with four different ectomycorrhizal fungi. New Phytol.110 (1988) 59–66.Google Scholar
  41. 41.
    Fitter, A. H., Influence of mycorrhizal infection on competition for phosphorus and potassium by two grasses. New Phytol.79 (1977) 19–125.Google Scholar
  42. 42.
    Fitter, A. H., Functioning of vesicular-arbuscular mycorrhizas under field conditions. New Phytol.99 (1985) 927–935.Google Scholar
  43. 43.
    Fitter, A. H., Effect of benomyl on leaf phosphorus concentration in alpine grasslands: a test of mycorrhizal benefit. New Phytol.103 (1986) 767–776.Google Scholar
  44. 44.
    Fitter, A. H., and Nichols, R., The use of benomyl to control infection by vesicular-arbuscular mycorrhizal fungi. New Phytol.110 (1988) 201–206.Google Scholar
  45. 45.
    Fleming, L. V., Effects of soil trenching and coring on the formation of ectomycorrhizas on birch seedlings grown around mature trees. New Phytol.98 (1984) 143–153.Google Scholar
  46. 46.
    Fleming, L. V., Experimental study of sequences of ectomycorrhizal fungi on birch (Betula sp.) seedling root systems. Soil Biol. Biochem.17 (1985) 591–600.Google Scholar
  47. 47.
    Fleming, L. V., Deacon, J. W., Last, F. T., and Donaldson, S. J., Influence of propagating soil on the mycorrhizal succession of birch seedlings transplanted to a field site. Trans. Br. mycol. Soc.82 (1984) 707–711.Google Scholar
  48. 48.
    Fogel, R., Mycorrhizae and nutrient cycling in natural forest ecosystems. New Phytol.86 (1980) 199–212.Google Scholar
  49. 49.
    Fogel, R., and Hunt, G., Fungal and arboreal biomass in a western Oregon Douglas fir ecosystem: distribution patterns and turnover. Can. J. For. Res.9 (1979) 256–265.Google Scholar
  50. 50.
    Fogel, R., and Hunt, G., Contribution of mycorrhizae and soil fungi to nutrient cycling in a Douglas fir ecosystem. Can. J. For. Res.13 (1983) 219–232.Google Scholar
  51. 51.
    Francis, R., and Read, D. J., Direct transfer of carbon between plants connected by vesicular-arbuscular mycorrhizal mycelium. Nature307 (1984) 53–56.Google Scholar
  52. 52.
    Frank, A. B., Die Bedeutung der Mykorrhizapilze für die gemeine Kiefer. Forstwiss. Cbl.16 (1894) 1852–1890.Google Scholar
  53. 53.
    Gange, A. C., Brown, V. K., and Farmer, L. M., A test of mycorrhizal benefit in an early successional plant community. New Phytol.115 (1990) 85–91.Google Scholar
  54. 54.
    Gay, P. E., Grubb, P. J., and Hudson, H. J., Seasonal changes in the concentrations of nitrogen, phosphorus and potassium and in the density of mycorrhiza, in biennial and matrix-forming perennial species of closed chalkland turf. J. Ecol.70 (1982) 571–594.Google Scholar
  55. 55.
    Gianinazzi-Pearson, V., and Gianinazzi, S., The physiology of vesicular-arbuscular mycorrhizal roots. Plant Soil71 (1983) 197–209.Google Scholar
  56. 56.
    Giltrap, N. J., Production of polyphenol oxidases ectomycorrhizal fungi with special reference itsLactarius species. Trans. Br. mycol. Soc.78 (1982) 75–81.Google Scholar
  57. 57.
    Gimingham, C. H., Ecology of Heathlands. Chapman & Hall, London 1972.Google Scholar
  58. 58.
    Grier, C. C., Vogt, K. A., Keyes, M. R., and Edmonds, R. L., Biomass distribution and above and below ground production in young and matureAbies amabilis zone ecosystems of the Washington cascades. Can. J. For. Res.11 (1981) 155–167.Google Scholar
  59. 59.
    Griffiths, R. P., Caldwell, B. A., Cromack, K., and Morita, R. Y., A study of chemical and microbial variables in forest soils colonized withHysterangium setchellii rhizomorphs, in: Proceedings of the 7th North American Conference on Mycorrhizas. Eds D. M. Sylvia, L. L. Hung and J. H. Graham. Univ. Florida, Gainesville 1987.Google Scholar
  60. 60.
    Griffiths, R. P., Caldwell, B. A., Cromack, K., and Morita, R. Y., Microbial dynamics and chemistry in Douglas fir forest soils colonized by ectomycorrhizal mats: 1. Seasonal variation in nitrogen chemistry and nitrogen cycle transformation rates. Can. J. For. Res.20 (1990) 211–218.Google Scholar
  61. 61.
    Grime, J. P., Plant Strategies and Vegetation Processes. John Wiley & Sons, New York 1979.Google Scholar
  62. 62.
    Grime, J. P., Mackey, J. M. L., Hiller, S. H., and Read, D. J., Floristic diversity in a model system using experimental microcosms. Nature328 (1987) 420–422.Google Scholar
  63. 63.
    Grubb, P. J., The maintenance of species richness in plant communities: the importance of the regeneration niche. Bio. Rev.52 (1977) 107–145.Google Scholar
  64. 64.
    Gupta, P. L., and Rorison, I. H., Seasonal differences in the availability of nutrients down a podsolic profile. J. Ecol.63 (1975) 521–534.Google Scholar
  65. 65.
    Hall, I. R., Effects of endomycorrhizas on the competitive abilities of white clover. N. Z. J. agric. Res.21 (1978) 509–515.Google Scholar
  66. 66.
    Hardie, K., The effect of removal of extraradical hyphae on water uptake by vesicular-arbuscular mycorrhizal plants. New Phytol.101 (1985) 677–684.Google Scholar
  67. 67.
    Harley, J. L., A study of the root system of the beech in woodland soils with especial reference to mycorrhizal infection. J. Ecol.28 (1940) 107–117.Google Scholar
  68. 68.
    Harley, J. L., Fungi in ecosystems. J. appl. Ecol.8 (1971) 627–642.Google Scholar
  69. 69.
    Harley, J. L., Ectomycorrhizas as nutrient absorbing organs. Proc. Roy. Soc. Lond. Ser. B.203 (1978) 1–21.Google Scholar
  70. 70.
    Harley, J. L., and Smith, S. E., Mycorrhizal Symbiosis. Academic Press, London 1983.Google Scholar
  71. 71.
    Harvey, A. E., Larsen, M. J., and Jurgensen, M. F., Distribution of ectomycorrhizae in a mature Douglas fir/larch forest system in Western Montana. For. Sci.22 (1976) 393–398.Google Scholar
  72. 72.
    Haselwandter, K., Bobleter, O., and Read, D. J., Utilization of lignin by ericoid and ectomycorrhizal fungi. Arch. Microbiol.153 (1990) 352–354.Google Scholar
  73. 73.
    Heal, O. W., and Dighton, J., Nutrient cycling and decomposition in natural terrestrial ecosystems, in: Soil Microflora-Microfauna Interactions. Eds M. J. Mitchell and J. P. Nakas, Martinus Nijhoff, The Hague 1985.Google Scholar
  74. 74.
    Hetrick, B. A. D., Wilson, G. W. T., and Hartnett, D. C., Relationship between mycorrhizal dependence and competitive ability of two tallgrass prairie grasses. Can. J. Bot.67 (1989) 2608–2615.Google Scholar
  75. 75.
    Jalal, M. A. F., and Read, D. J., The organic acid composition ofCalluna heathland soil with special reference to phyto- and fungitoxicity. I. Isolation and identification of organic acids. Plant Soil70 (1983) 257–272.Google Scholar
  76. 76.
    Jalal, M. A. F., and Read, D. J., The organic acid composition ofCalluna heathland soil with special reference to phyto- and fungitoxicity. II. Monthly quantitative determination of the organic acid content ofCalluna and spruce dominated soils. Plant Soil70 (1983) 272–286.Google Scholar
  77. 77.
    Janos, D.P., Mycorrhizae influence tropical succession. Biotropica12 (1980) 56–64.Google Scholar
  78. 78.
    Jasper, D. A., Robson, A. D., and Abbott, L. K., The effect of surface mining on the infectivity of vesicular arbuscular mycorrhizal fungi. Aust. J. Bot.35 (1987) 641–652.Google Scholar
  79. 79.
    Jasper, D. A., Abbott, L. K., and Robson, A. D., Soil disturbance reduces the infectivity of external hyphae of vesicular-arbuscular mycorrhizal fungi. New Phytol.112 (1989) 93–99.Google Scholar
  80. 80.
    Jasper, D. A., Abbott, L. K., and Robson, A. D., Hyphae of a vesicular-arbuscular mycorrhizal fungus maintain infectivity in dry soil except when the soil is disturbed. New Phytol.112 (1989) 101–107.Google Scholar
  81. 81.
    Koide, R. T., Huenneke, L. F., Hamburg, S. P., and Mooney, H. A., Effects of applications of fungicide, phosphorus and nitrogen on the structure and productivity of an annual serpentine plant community. Funct. Ecol.2 (1988) 335–344.Google Scholar
  82. 82.
    Lamb, R. J., Factors responsible for the distribution of mycorrhizal fungi ofPinus in eastern Australia. Aust. J. For. Res.9 (1979) 25–34.Google Scholar
  83. 83.
    Leake, J. R., Metabolism of phyto- and fungitoxic phenolic acids by the ericoid mycorrhizal fungus, in: Proceedings of the 7th North American Mycorrhiza Conference, pp. 332–333. Eds D. M. Sylvia, L. L. Hung and J. H. Graham. Univ. Florida, Gainesville 1987.Google Scholar
  84. 84.
    Leake, J. R., and Read, D. J., The biology of mycorrhiza in the Ericaceae. XIII. Some characteristics of the extracellular proteinase activity of the ericoid endophyteHymenoscyphus ericae. New Phytol.112 (1989) 69–76.Google Scholar
  85. 85.
    Leake, J. R., and Read, D. J., Proteinase activity in mycorrhizal fungi. I. The effect of extracellular pH on the production and activity of proteinase by ericoid endophytes from soils of contrasted pH. New Phytol.115 (1990) 243–250.Google Scholar
  86. 86.
    Leake, J. R., and Read, D. J., Chitin as a nitrogen source for mycorrhizal fungi. Mycol. Res.94 (1990) 993–995.Google Scholar
  87. 87.
    Leake, J. R., and Read, D. J., The effects of phenolic compounds on nitrogen mobilization by ericoid mycorrhizal systems. Agric. Ecosystems Env.29 (1989) 225–236.Google Scholar
  88. 88.
    Lewis, D. H., The relevance of symbiosis to taxonomy and ecology with particular reference to mutualistic symbioses and the exploitation of marginal habitats, in: Taxonomy and Ecology, pp. 151–171. Ed. V. H. Heywood. Academic Press, London 1973.Google Scholar
  89. 89.
    Lindeberg, G., Über die Physiologie Lignin-abbauender Boden-Hymenomyceten. Symb. bot. upsal.8 (1944) 1–183.Google Scholar
  90. 90.
    Linkins, A. E., and Antibus, R. K., Mycorrhizae ofSalix rotundifolia in coastal arctic tundra, in: Arctic and Alpine Mycology, pp. 509–531. Eds G. A. Laursen and J. F. Ammirati. University of Washington Press, Washington 1981.Google Scholar
  91. 91.
    Lundeberg, G., Utilization of various nitrogen sources, in particular bound nitrogen, by mycorrhizal fungi. Stud. For. Suec.79 (1970) 1–95.Google Scholar
  92. 92.
    Malloch, D. W., Pirozynski, K. A., and Raven, P. H., Ecological and evolutionary significance of mycorrhizal symbioses in vascular plants. Proc. natl. Acad. Sci. USA77 (1980) 2113–2118.Google Scholar
  93. 93.
    Mason, P. A., Wilson, J., Last, F. T., and Walker, C., The concept of succession in relation to the spread of sheating mycorrhizal fungi on inoculated tree seedlings growing in unsterile soils. Plant Soil71 (1983) 247–256.Google Scholar
  94. 94.
    Melin, E., and Nilsson, H., Transport of labelled nitrogen from an ammonium source to pine seedlings through mycorrhizal mycelium. Svensk. Bot. Tids.46 (1952) 281–285.Google Scholar
  95. 95.
    Melin, E., and Nilsson, H., Transfer of labelled nitrogen from glutamic acid to pine seedlings through the mycelium ofBoletus variegatus (S.W.) Fr. Nature171 (1953) 434.Google Scholar
  96. 96.
    Meyer, F. H., Untersuchungen über die Aktivität der Mikroorganismen in Müll, Moder and Rohhumus. Arch. Mikrobiol.33 (1959) 149–169.Google Scholar
  97. 97.
    Meyer, F. H., Distribution of ectomycorrhizae in native and manmade forests, in: Ectomycorrhizae: their Ecology and Physiology, pp. 79–105. Eds G. C. Marks and T. T. Kozlowski. Academic Press, New York 1973.Google Scholar
  98. 98.
    Mitchell, D. T., and Read, D. J., Utilization of inorganic and organic phosphates by the mycorrhizal endophytes ofVaccinium macrocarpon andRhododendron ponticum. Trans. Br. mycol. Soc.76 (1981) 255–260.Google Scholar
  99. 99.
    Mooney, H. A., Carbon gaining capacity and allocation patterns of Mediterranean climate plants, in: Mediterranean Type Ecosystems—The Role of Nutrients. Eds F. Kruger, D.T. Mitchell and J.U.M. Jarvis. Springer, Berlin 1983.Google Scholar
  100. 100.
    Nelsen, C. E., and Safir, G. R., Increased drought tolerance of mycorrhizal onion plants caused by improved phosphorus nutrition. Planta154 (1982) 407–413.Google Scholar
  101. 101.
    Newbery, D. M., Alexander, I. J., Thomas, D. W., and Gartlan, J. S., Ectomycorrhizal rain-forest legumes and soil phosphorus in Korup National Park, Cameroon. New Phytol.109 (1988) 433–450.Google Scholar
  102. 102.
    Newman, E. I., Heap, A. J., and Lawley, R. A., Abundance of mycorrhizal and root surface micro-organisms ofPlantago lanceolata in relation to soil and vegetation. New Phytol.89 (1981) 95–108.Google Scholar
  103. 103.
    Newton, A. C., and Pigott, D., Mineral nutrition and mycorrhizal infection of seedling of oak and birch. I. Nutrient uptake and the development of mycorrhizal infection during seedling establishment. New Phytol.17 (1991) 37–44.Google Scholar
  104. 104.
    Norkrans, B., Studies in growth and cellulolytic enzymes ofTricholoma. Symb. bot. upsal.11 (1950) 126.Google Scholar
  105. 105.
    Ogawa, M., Ecology of higher fungi inTsuga diversifolia andBetula ermani—Abies mariesii forests of subalpine zone. Trans. mycol. Soc. Japan18 (1977) 1–19.Google Scholar
  106. 106.
    O'Halloran, I. P., Miller, M. H., and Arnold, G., Absorption of P by corn (Zea mays L.) as influenced by soil disturbance. Can. J. Soil Sci.66 (1986) 287–302.Google Scholar
  107. 107.
    Owusu-Bennoah, E., and Wild, A., Effects of vesicular-arbuscular mycorrhizas on the size of the labile pool of soil phosphate, in: Tropical Mycorrhiza Research, pp. 231. Ed. P. Mikola. Clarendon Press, Oxford 1980.Google Scholar
  108. 108.
    Pearson, V., and Read, D. J., The physiology of the mycorrhizal endophyte ofCalluna vulgaris. Trans. Br. mycol. Soc.64 (1975) 1–7.Google Scholar
  109. 109.
    Persson, H., Spatial distribution of fine-root growth, mortality, and decomposition in a young Scots Pine stand. Oikos34 (1980) 77–87.Google Scholar
  110. 110.
    Rayner, A. D. M., Powell, K. A., Thompson, W., and Jennings, D. H., Morphogenesis of vegetative organs, in: Developmental Biology of Higher Fungi. Eds D. Moore, L. A. Casselton, D. A. Wood and J.C. Frankland. Cambridge University Press, Cambridge 1985.Google Scholar
  111. 111.
    Read, D. J., The biology of mycorrhiza in the Ericales. Can. J. Bot.61 (1983) 985–1004.Google Scholar
  112. 112.
    Read, D. J., The structure and function of the vegetative mycelium of mycorrhizal roots, in: The Ecology and Physiology of the Fungal Mycelium, pp. 215–240. Eds D. H. Jennings and A. D. M. Rayner. Cambridge University Press, 1984.Google Scholar
  113. 113.
    Read, D. J., Interactions between ericaceous plants and their competitors with special reference to soil toxicity, in: Weed Control and Vegetation Management in Forests and Amenity Areas, Asp. Appl. Biol. 5 195–209. Association of Applied Biologists, Wellesbourne, U.K., 1984.Google Scholar
  114. 114.
    Read, D. J., In supported of Franks organic nitrogen theory. Angew. Bot.61 (1987) 25–37.Google Scholar
  115. 115.
    Read, D. J., Ecological integration by mycorrhizal fungi, in: Endocytobiology, IV. Ed. P. Nardon, INRA, Paris 1990.Google Scholar
  116. 116.
    Read, D. J., and Stribley, D. P., Effect of mycorrhizal infection on nitrogen and phosphorus nutrition of ericaceous plants. Nature244 (1973) 81.Google Scholar
  117. 117.
    Read, D. J., and Stribley, D. P., Some mycological aspects of the biology of mycorrhiza in the Ericaceae, in: Endomycorrhizas, pp. 105–119. Eds F. E. Sanders, B. Mosse and P. B. Tinker. Academic Press, London 1975.Google Scholar
  118. 118.
    Read, D. J., and Birch, C. P. D., The effects and implications of disturbance of mycorrhizal mycelial systems. Proc. Roy. Soc. Edinb.94B (1988) 13–24.Google Scholar
  119. 119.
    Read, D. J., Koucheki, H. K., and Hodgson, J., Vesicular-arbuscular mycorrhiza in natural vegetation systems. I. The occurrence of infection. New Phytol.77 (1976) 641–655.Google Scholar
  120. 120.
    Read, D. J., Francis, R., and Finlay, R. D., Mycorrhizal mycelia and nutrient cycling in plant communities, in: Ecological Interactions in Soil: Plants, Microbes and Animals, pp. 193–217. Eds A. H. Fitter, D. Atkinson, D. J. Read and M. B. Usher. British Ecological Society Special Publication. 4. Blackwell Scientific Publications, Oxford 1985.Google Scholar
  121. 121.
    Read, D. J., and Boyd, R., Water relations of mycorrhizal fungi and their host plants, in: Water, Fungi and Plants, pp. 287–303. Eds P. Ayres and L. Boddy. Cambridge University Press, 1986.Google Scholar
  122. 122.
    Read, D. J., Mycorrhizas and nutrient cycling in sand dune ecosystems. Proc. Roy. Soc. Edinb.96B (1989) 89–110.Google Scholar
  123. 123.
    Read, D. J., Leake, J. R., and Langdale, A. R., The nitrogen nutrition of mycorrhizal fungi and their host plants, in: Nitrogen, Phosphorus and Sulphur Utilization by Fungi. Eds L. Boddy, R. Marchant and D. J. Read. Cambridge University Press, 1989.Google Scholar
  124. 124.
    Reddell, P., and Malajczuk, N., Formation of ectomycorrhizae by jarrah (Eucalyptus marginata Donn. ex Smith) in litter and soil. Aust. J. Bot.32 (1984) 435–444.Google Scholar
  125. 125.
    Reiners, W. A., Ecology of a heath-shrub synusia in the pine barrens of Long Island, New York. Bull. Torrey Bot. Club92 (1965) 448–464.Google Scholar
  126. 126.
    Rives, C. S., Bajwa, M. I., Liberta, A. E., and Miller, R. M., Effects of top soil storage during surface mining on viability of VA mycorrhiza. Soil Sci.129 (1980) 253–257.Google Scholar
  127. 127.
    Safir, G. R., Boyer, J. S., and Gerdemann, J. W., Mycorrhizal enhancement of water transport in soybean. Science172 (1971) 581–583.Google Scholar
  128. 128.
    Safir, G. R., Boyer, J. S., and Gerdemann, J. W., Nutrient status and mycorrhizal enhancement of water transport in soybean. Plant Physiol.49 (1972) 700–703.Google Scholar
  129. 129.
    Sanders, F. E., and Tinker, P. B., Mechanism of absorption of phosphate from soil byendogene mycorrhizas. Nature233 (1971) 278–279.Google Scholar
  130. 130.
    Schuler, R., and Haselwandter K., Hydroxamate siderophore production by ericoid mycorrhizal fungi. J. Pl. Nut.11 (1988) 907–913.Google Scholar
  131. 131.
    Shaw, G., and Read, D. J., The biology of mycorrhiza in the Ericaceae. XIV. Effects of iron and aluminium on the activity of acid phosphatase in the ericoid endophyteHymenoscypthus ericae (Read) Korf & Kernan. New Phytol.113 (1989) 529–533.Google Scholar
  132. 132.
    Shaw, G., Leake, J. R., Baker, A. J. M. and Read, D. J., The biology of mycorrhiza in the Ericaceae. XVII. The role of mycorrhiza in the regulation of iron uptake by ericaceous plants. New Phytol.115 (1990) 251–259.Google Scholar
  133. 133.
    Smith, S. E., Tester, M., and Walker, N. A., The development of mycorrhizal root systems inTrifolium substerraneum L. Growth of roots and the uniformity of spatial distribution of mycorrhizal infection units in young plants. New Phytol.103 (1986) 117–131.Google Scholar
  134. 134.
    Specht, R. L., Heathlands and related shrublands of the world, in: Ecosystems of the World, vol. 9A. Heathlands and Related Shrublands. Descriptive studies, pp. 1–18 (1979).Google Scholar
  135. 135.
    Specht, R. L., and Moll, E. J., Mediterranean type heathlands and sclerophyllous shrublands of the world: an overview, in: Mediterranean Type Ecosystems—The Role of Nutrients. Eds F. J. Kruger, D. T. Mitchell and J.U.M. Jarvis. Springer Verlag, Berlin 1983.Google Scholar
  136. 136.
    Straker, C. J., and Mitchell, D. T., The activity and characterization of acid phosphatases in endomycorrhizal fungi of the Ericaceae. New Phytol.104 (1986) 243–256.Google Scholar
  137. 137.
    Stribley, D. P., and Read, D. J., The biology of mycorrhiza in the Ericaceae. IV. The effects of mycorrhizal infection on the uptake of15N from labelled soil byVaccinium macrocarpon Ait. New Phytol.73 (1974) 1149–1155.Google Scholar
  138. 138.
    Stribley, D. P., and Read, D. J., The biology of mycorrhiza in the Ericaceae. VI. The effects of mycorrhizal infection and concentration of ammonium nitrogen on growth of cranberry (Vacciniium macrocarpon Ait.) in sand culture. New Phytol.77 (1976) 63–72.Google Scholar
  139. 139.
    Stribley, D. P., and Read, D. J., The biology of mycorrhiza in the Ericaceae. VII. The relationship between mycorrhizal infection and the capacity to utilize simple and complex organic nitrogen sources. New Phytol.86 (1980) 365–371.Google Scholar
  140. 140.
    Söderström, B., and Read, D. J., Respiratory activity of intact and excised ectomycorrhizal mycelial systems growing in unsterilized soil. Soil Biol. Biochem.19 (1987) 231–236.Google Scholar
  141. 141.
    Summerbell, R. C., Benomyl-tolerant microfungi associated with mycorrhizae of black spruce. Can. J. Bot.66 (1988) 553–557.Google Scholar
  142. 142.
    Toth, R., and Miller, R. M., Dynamics of arbuscule development and degeneration in aZea mays mycorrhiza. Am. J. Bot.71 (1984) 449–460.Google Scholar
  143. 143.
    Trappe, J. M., Selection of fungi for ectomycorrhizal inoculation in nurseries. A. Rev. Phytopath.15 (1977) 203–222.Google Scholar
  144. 144.
    Trojanowski, J., Haider, K., and Hutterman, A., Decomposition of14C-labelled lignin, holocellulose and lignocellulose by mycorrhizal fungi. Arch. Microbiol.139 (1984) 202–206.Google Scholar
  145. 145.
    Vogt, K. A., Moore, E. E., Vogt, D. J., Redlin, M. J., and Edmonds, R. L., Conifer fine root and mycorrhizal root biomass within the forest floors of Douglas fir stands of different ages and site productivites. Can. J. For. Res.13 (1983) 429–437.Google Scholar
  146. 146.
    Wallen, B., Translocation of14C in adventitiously rootingCalluna vulgaris on peat. Oikos40 (1983) 241–248.Google Scholar
  147. 147.
    Wiersum, L. K., Density of root branching as affected by substrate and separate ions. Acta bot. neerl.7 (1958) 174–190.Google Scholar

Copyright information

© Birkhäuser Verlag 1991

Authors and Affiliations

  • D. J. Read
    • 1
  1. 1.Department of Animal and Plant SciencesUniversity of SheffieldSheffield(England)

Personalised recommendations