Pharmaceutisch Weekblad

, Volume 12, Issue 4, pp 142–144 | Cite as

Fluorescence of harmol, harmalol and 2-hydroxycarbazole in concentrated hydroxide solutions

  • J. Hidalgo
  • C. Carmona
  • M. Balón
  • M. A. Muñoz


Room temperature electronic absorption and fluorescence spectra of harmol, harmalol and 2-hydroxycarbazole have been obtained in concentrated aqueous potassium hydroxide solutions. The appearance of a new fluorescence band for all these compounds in media of H_ greater than 16, has been ascribed to the emission of excited dianions formed by deprotonation. Acidity constants have been estimated from the Föster-Weller method.


Harmalol Harmol 2-Hydroxycarbazole Spectrometry, fluorescence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Szantay C, Blaskö G, Honty H, Dörnyei D. The alkaloids. Vol. 27. New York: Academic Press, 1986.Google Scholar
  2. 2.
    Schilitter E, Bein HJ. Medicinal chemistry. Vol. 7. New York: Academic Press, 1967.Google Scholar
  3. 3.
    Müller WE, Fehske KJ, Borbe HO, Wollert U, Nanz C, Rommelspacher H. On the neuropharmacology of harmane and other beta-carbolines. Pharmacol Biochem Behav 1981;14:693–9.PubMedGoogle Scholar
  4. 4.
    Bloom F, Barchas J, Sandler M, Usdin E. Betacarbolines and tetrahydroisoquinolines. New York: Alan R. Liss, 1982.Google Scholar
  5. 5.
    Beljanski M, Beljanski MS. Selective inhibition ofin vitro synthesis of cancer DNA by alkaloids of betacarboline class. Exp Cell Biol 1982;50:79–87.PubMedGoogle Scholar
  6. 6.
    Beljanski M, Beljanski MS. Three alkaloids as selective destroyers of the proliferative capacity of cancer cells. IRCS Med Sci 1984;12:587–8.Google Scholar
  7. 7.
    Hadley SG, Muraki AS, Spitzer K. The fluorescence and phosphorescence spectra and phosphorescence decay time of harmine, harmaline, harmalol, harmane, and norharman in aqueous solutions and EPA at 77 K. J Forensic Sci 1974; 19:657–69.Google Scholar
  8. 8.
    Denckla WD, Dewey HK. The determination of tryptophan in plasma, liver, and urine. J Lab Clin Med 1967;69(1):160–9.PubMedGoogle Scholar
  9. 9.
    Sakurovs R, Ghiggino KP. Excited state proton transfer in beta-carboline. J Photochem 1982;18:1–8.Google Scholar
  10. 10.
    Wolfbeis OS, Fürlinger E, Wintersteiger R. Solvent and pH-dependence of the absorption and fluorescence spectra of harman: detection of three ground state and four excited state species. Monatsschr Chem 1982;113:509–13.Google Scholar
  11. 11.
    Wolfbeis OS, Fürlinger E. The pH-dependence of the absorption and fluorescence spectra of harmine and harmol: drastic differences in the tautomeric equilibria of ground and first excited singlet state. Z Phys Chem NF 1982;129:171–83.Google Scholar
  12. 12.
    Tomás Vert F, Zabala Sánchez I, Olba Torrent A. Acidity constants of beta-carbolines in the ground and excited singlet states. J Photochem 1983;23:355–68.Google Scholar
  13. 13.
    Tomás Vert F, Zabala Sánchez I, Olba Torrent A. Acidity constants of harmaline and harmalol in the ground and excited singlet states. J Photochem 1984;26:285–94.Google Scholar
  14. 14.
    Savory B, Turnbull JH. Luminescence spectra of harmine, harmaline, reserpiline and 3-dehydroreserpines. J Photochem 1984;24:355–71.Google Scholar
  15. 15.
    Tomás F, Zabala I, Olba A. Acid-base and tautomeric equilibria of harmol in the ground and first excited singlet states. J Photochem 1985;31:253–63.Google Scholar
  16. 16.
    Olba Torrent A, Tomás Vert F, Zabala Sánchez I, Medina Casamayor P. Fluorescence, phosphorescence and basicity in the first excited triplet of 2-methyl-harmine and harmaline. J Photochem 1987;37:109–16.Google Scholar
  17. 17.
    Balón M, Muñoz MA, Hidalgo J, Carmona MC, Sánchez M. Fluorescence characteristics of beta-carboline alkaloids in highly concentrated hydroxide solutions. Photochem 1987;36:193–204.Google Scholar
  18. 18.
    Muñoz Perez MA, Carmona Guzmán MC, Hidalgo Toledo J, Balón Almeida M. Ionization of betacarbolines in concentrated hydroxide solutions. J Chem Soc Perkin Trans II 1986:1573–5.Google Scholar
  19. 19.
    Douglas KT, Sharma RK, Walmsley JF, Hider RC. Ionization processes of some harmala alkaloids. Mol Pharmacol 1983;23:614–8.PubMedGoogle Scholar
  20. 20.
    Yagil G. The effect of ionic hydration on equilibria and rates in concentrated electrolyte solutions. III. The H_ scale in concentrated hydroxide solutions. J Phys Chem 1967;71:1034–44.Google Scholar
  21. 21.
    Balón-Almeida M, Muñoz-Perez MA, Carmona-Guzmán MC, Hidalgo-Toledo J. Ionization equilibria of harmol and harmalol in concentrated hydroxide solutions. J Chem Soc Perkin Trans II 1988:1165–7.Google Scholar
  22. 22.
    Cox RA, Stewart R. The ionization of feeble organic acids in DMSO-water mixtures. Acidity constants derived by extrapolation to the aqueous state. J Am Chem Soc 1976;98:488–94.Google Scholar
  23. 23.
    Donckt EV. Acid-base properties of excited states. Prog React Kinet 1970;5:273–99.Google Scholar
  24. 24.
    Yagil G. The proton dissociation constant of pyrrole, indole and related compounds. Tetrahedron 1967;23:2855–61.PubMedGoogle Scholar
  25. 25.
    Capomacchia AC, Schulman SG. Protolysis of five-membered heterocycles in the lowest excited singlet state: carbazole andN-ethylearbazole. Anal Chim Acta 1972;59:471–3.Google Scholar
  26. 26.
    Samanta A, Chattopadhyay N, Nath D, Kundu T, Chowdhury M. Excited-state proton transfer kinetics of carbazole. Chem Phys Lett 1985;121:507–12.Google Scholar
  27. 27.
    Balón M, Carmona MC, Muñoz MA, Hidalgo J. The acid-base properties of pyrrole and its benzologs indole and carbazole. A reexamination from the excess acidity method. Tetrahedron 1989;45:7501–4.Google Scholar

Copyright information

© Royal Dutch Association for Advancement of Pharmacy 1990

Authors and Affiliations

  • J. Hidalgo
    • 1
  • C. Carmona
    • 1
  • M. Balón
    • 1
  • M. A. Muñoz
    • 1
  1. 1.Department of Physical Chemistry, Faculty of PharmacyUniversity of SevillaSevillaSpain

Personalised recommendations