Transgenic Research

, Volume 5, Issue 2, pp 105–113

A system for tissue-specific copper-controllable gene expression in transgenic plants: Nodule-specific antisense of asparate aminotransferase-P2

  • Vadim L. Mett
  • Ellen Podivinsky
  • Andrew M. Tennant
  • Leesa P. Lochhead
  • William T. Jones
  • Paul H. S. Reynolds
Article

Abstract

A vector system, based on copper controllable gene expression, has been developed to give control over place as well as time of expression of an introduced gene. This system consists of two elements: (1) the yeastace1 gene encoding a metallo-regulatory transcription factor, ACE1, under control of either an organ-specific or a constitutive promoter; and (2) a gene of interest under control of a chimaeric promoter consisting of the 46 bp TATA fragment of the CaMV 35S RNA promoter linked to four repeats of the ACE1 binding site. The functioning of the system in an organ-specific manner was tested in nodulatedLotus corniculatus plants which consisted of non-transformed shoots plus transformed hairy root tissue ‘wild-type tops/transgenic roots’. After addition of copper ions to the plant nutrient solution, β-glucuronidase (GUS) expression was visualized either specifically in nodules or in both roots and nodules when theace1 gene was placed under control of thenod45 promoter or the CaMV 35S RNA promoter, respectively. The nodule-specific system was used to express antisense constructs of aspartate aminotransferase-P2 in transgenicLotus corniculatus plants. When expression was induced by the addition of copper ions to the plant nutrient solution aspartate aminotranferase-P2 activity declined dramatically, and a decrease of up to 90% was observed in nodule asparagine concentration.

Keywords

copper controllable expression metallo-regulatory transcription factor metallo-responsive element nodule-specific expression aspartate aminotransferase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. An, G., Ebert, P.P., Mitra, A. and Ha, S.B. (1988) Binary vectors. In Gelvin, S.B., Schilperoort, R.A. and Verma, D.P.S. eds,Plant Molecular Biology Manual A3, pp. 1–19. Dordrecht: Kluwer Academic Publishers.Google Scholar
  2. Benfey, P.N. and Chua, N.H. (1990) The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants.Science 250, 959–66.Google Scholar
  3. Vevan, M. (1984) BinaryAgrobacterium vectors for plant transformation.Nucl. Acids Res. 12, 8711–21.PubMedGoogle Scholar
  4. Boland, M.J., Hanks, J.F., Reynolds, P.H.S., Blevins, D.G., Tolbert, N.E. and Schubert, K.R. (1982) Subcellular organisation of ureide biogenesis from glycolytic intermediates and ammonium in nitrogen fixing soybean nodules.Planta 155, 45–51.CrossRefGoogle Scholar
  5. Farnham, M.W., Miller, S.S., Griffith, S.M., and Vance, C.P. (1990) Aspartate aminotransferase in alfalfa root nodules: II Immunological distinction between two forms of the enzyme.Pl. Physiol. 93, 603–10.Google Scholar
  6. Givan, C.V. (1980) Aminotransferases in higher plants. In Miflin, B.J. ed.,The Biochemistry of Plants: A Comprehensive Treatise, pp. 329–57. New York: Academic Press.Google Scholar
  7. Gleave, A.P. (1992) A versatile binary vector system with a T-DNA organisational structure conductive to efficient integration of cloned DNA into the plant genome.Pl. Mol. Biol. 20, 1203–7.CrossRefGoogle Scholar
  8. Gantt, J.S., Larson, R.J., Farnham, M.W., Pathirana, S.M., Miller, S.S. and Vance, C.P. (1992) Aspartate aminotransferase in effective and ineffective alfalfa nodules.Pl. Physiol. 98, 868–78.Google Scholar
  9. Griffith, S.M. and Vance, C.P. (1989) Aspartate aminotransferase in alfalfa root nodules: I Purification and partial characterisation.Pl. Physiol. 90, 1622–9.Google Scholar
  10. Hansen, J., Jogensen, J.E., Stougaard, J. and Marcker, K.A. (1989) Hairy roots — a short cut to transgenic root nodules.Pl. Cell Rep. 8, 12.CrossRefGoogle Scholar
  11. Herrera-Estrella, L. and Simpson, J. (1988) Foreign gene expression in plants. In Shaw, C.H. ed.,Plant Molecular Biology: A Practical Approach, pp. 131–60. Oxford: IRL Press.Google Scholar
  12. Jefferson, R.A. (1987) Assaying chimeric genes in plants: the GUS gene fusion system.Pl. Mol. Biol. Rep. 5, 387–405.Google Scholar
  13. Jones, W.T., Jones, S.D., Harvey, D., Rodber, K.A., Ryan, G.B. and Reynolds, P.H.S. (1994) Production and characterisation of monoclonal antibodies against aspartate aminotransferase-P1 from lupin root nodules.Pl. Physiol. 104, 91–7.Google Scholar
  14. Jones, W.T., Jones, S.D., Liddane, C.P., Reynolds, P.H.S. (1992) Measurement of aspartate aminotransferase-P2 in developing lupin nodules using a two site ELISA employing monoclonal antibodies.Aust. J. Pl. Physiol. 19, 147–53.Google Scholar
  15. Jones, W.T., Reynolds, P.H.S., Jones, S.D., Liddane, C.P. and Rodber, K.A. (1990) Purification and characterisation of monoclonal antibodies against aspartate aminotransferase-P2 from lupin root nodules.Pl. Physiol. 94, 1358–64.Google Scholar
  16. Lam, E., Benfey, P.N., Gilmartin, P.M., Fang, R.-X. and Chua, N.H. (1989) Site-specific mutations alterin vitro factor binding and change promoter expression pattern in transgenic plants.Proc. Natl. Acad. Sci. USA 86, 7890–4.PubMedGoogle Scholar
  17. MacKnight, R.C., Reynolds, P.H.S. and Farnden, K.J.F. (1995) Analysis of the lupin nodulin-45 promoter: conserved regulatory sequences are important for promoter activity.Pl. Mol. Biol. 27, 457–66.CrossRefGoogle Scholar
  18. Mett, V.L., Lochhead, L.P. and Reynolds, P.H.S. (1993) Coppercontrollable gene expression system for whole plants.Proc. Natl. Acad. Sci. USA 90, 4567–71.PubMedGoogle Scholar
  19. Petit, A., Stougaard, J., Marcker, K.A. and Tempe, J. (1987) Transformation and regeneration of the legumeLotus corniculatus: A system for molecular studies of symbiotic nitrogen fixation.Mol. Gen. Genet. 207, 245–50.CrossRefGoogle Scholar
  20. Reynolds, P.H.S., Blevins, D.G., Boland, M.J., Schubert, K.R. and Randall, D.D. (1982a) Enzymes of ammonia assimilation in legume nodules: a comparison between ureide- and amidetransporting plants.Physiol. Plant 55, 255–60.Google Scholar
  21. Reynolds, P.H.S., Boland, M.J., Blevins, D.G., Schubert, K.R. and Randall, D.D. (1982b) Enzymes of amide and ureide biogenesis in developing soybean nodules.Pl. Physiol. 69, 1334–8.Google Scholar
  22. Reynolds, P.H.S., Boland, M.J. and Farnden, K.J.F. (1981) Enzymes of nitrogen metabolism in legume nodules: Partial purification and characterisation of the aspartate aminotransferases from lupin nodules.Arch. Biochem. Biophys 209, 524–33.CrossRefPubMedGoogle Scholar
  23. Reynolds, P.H.S. and Farnden, K.J.F. (1979) The involvement of aspartate aminotransferases in ammonium assimilation in lupin nodules.Phytochemistry 18, 1625–30.CrossRefGoogle Scholar
  24. Reynolds, P.H.S., Smith, L.A., Dickson, J.N.J.J., Jones, W.T., Jones, S.D., Rodber, K.A., Carne, A. and Liddane, C.P. (1992) Molecular cloning of a cDNA encoding aspartate aminotransferase-P2 from lupin root nodules.Pl. Mol. Biol. 19, 465–72.CrossRefGoogle Scholar
  25. Rice, S.J., Grant, M.R., Reynolds, P.H.S. and Farnden, K.J.F. (1993) DNA sequence of nodulin 45 fromLupinus angustifolius.Pl. Science 90, 155–66.CrossRefGoogle Scholar
  26. Ryan, E., Bodley, F. and Fottrell, P.F. (1972) Purification and characterisation of aspartate aminotransferases from soybean root nodules andRhizobium japonicum.Phytochemistry 11, 957–63.CrossRefGoogle Scholar
  27. Scott, D.B., Farnden, K.J.F. and Robertson, J.G. (1976) Ammonia assimilation in lupin nodules.Nature 263, 703–5.Google Scholar
  28. Shillito, R.D. and Saul, M.W. (1988) Protoplast isolation and transformation. In Shaw, C.H. ed.,Plant Molecular Biology: A Practical Approach, pp. 161–86. Oxford: IRL.Google Scholar
  29. Thiele, D.J. and Hamer, D.H. (1986) Tandemly duplicated upstream control sequences mediate copper-induced transcription of theSaccharomyces cerevisiae copper-metallothionein gene.Mol. Cel. Biol. 6, 1158–63.Google Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • Vadim L. Mett
    • 1
  • Ellen Podivinsky
    • 1
  • Andrew M. Tennant
    • 1
  • Leesa P. Lochhead
    • 1
  • William T. Jones
    • 1
  • Paul H. S. Reynolds
    • 1
  1. 1.Plant Improvement DivisionHorticulture and Food Research Institute of New ZealandPalmerston NorthNew Zealand

Personalised recommendations