Transgenic Research

, Volume 5, Issue 2, pp 97–103

Evidence for genomic changes in transgenic rice (Oryza sativa L.) recovered from protoplasts

  • Phan Huy Bao
  • Simona Granata
  • Stefano Castiglione
  • Gejiao Wang
  • Chiara Giordani
  • Elena Cuzzoni
  • Giuseppe Damiani
  • Claudio Bandi
  • Swapan K. Datta
  • Karabi Datta
  • Ingo Potrykus
  • Anna Callegarin
  • Francesco Sala
Article

Abstract

The occurrence of genomic modifications in transgenic rice plants recovered from protoplasts and their transmission to the self-pollination progeny has been verfied with the random amplified polymorphic DNA (RAPD) approach. The plant was the Indica-type rice (Oryza sativa L.) cultivar Chinsurah Boro II. The analysed material was: (1) microspore-derived embryogenic rice cells grown in suspension culture, (2) transgenic plants recovered from protoplasts produced from the cultured cells and (3) the self-pollination progeny (two successive generations) of the transgenic plants. DNA purified from samples of these materials was PCR-amplified with different random oligonucleotide primers and the amplification products were analysed by agarose gel electrophoresis. Band polymorphism was scored and used in band-sharing analyses to produce a similarity matrix. Relationships among the analysed genomes were expressed in a dendrogram.

The extensive DNA changes evidenced in cultured cells demonstrate the occurrence of somaclonal variation in the material used to produce protoplasts for gene transfer. Quantitatively reduced DNA changes were also found in the resulting transgenic plants and i their self-pollination progenies.

While confirming the stability of the foreign gene in transgenic plants, this work gives molecular evidence for the occurrence of stable genomic changes in transgenic plants and points toin vitro cell culture as the causative agent. RAPDs are shown to be a convenient tool to detect and estimate the phenomenon at the molecular level. The methodology is also proposed as a fast tool to select those transgenic individuals that retain the most balanced genomic structure and to control the result of back-crosses planned to restore the original genome.

Keywords

Transgenic rice PCR-RAPD arbitrary DNA primers genomic changes somaclonal variation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown, P.T.H., Lange, F.D., Kranz, E. and Lorz, H. (1993) Analysis of single protoplasts and regenerated plants by PCR and RAPD technology.Mol. Gen. Genet. 237, 311–7.PubMedGoogle Scholar
  2. Castiglionc, S., Wang, G., Damiani, G., Bandi, C., Bisoffi, S. and Sala, F. (1993) RAPD Fingerprints for identificiation and for taxonomic studies of elite poplar (Populus spp.) clones.Theor. Appl. Genet. 85, 54–9.Google Scholar
  3. Chan, M.T., Chang, H.H., Ho, S.L., Tong, W.F. and YU, S.M. (1993)Agrobacterium-mediated production of transgenic rice plants expressing a chimeric α-amylase promoter/β-glucuronidase gene.Pl. Mol. Biol. 22, 491–506.CrossRefGoogle Scholar
  4. Christou, P., Ford, T.L. and Kofron, M. (1991) Production of transgenic rice (Oryza sativa L.) plants from agronomically important Indica and Japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos.Bio/Technology 9, 957–62.CrossRefGoogle Scholar
  5. Christou, P., Ford, T.L. and Kofron, M. (1992) The development of a variety-independent gene-transfer method for rice.Tibtech. 10, 239–46.Google Scholar
  6. Chunwongse, J., Martin, G.B. and Tanksley, S.D. (1993) Pregermination genotypic screening using PCR amplification of half-seeds.Theor. Appl. Genet. 86, 694–8.CrossRefGoogle Scholar
  7. Clark, A.G. and Lanigan, C.M.S. (1993) Prospects for estimating nucleotide divergence with RAPDs.Mol. Biol. Evol. 10, 1096–111.PubMedGoogle Scholar
  8. Crawford, R. (1991) Gene mapping Japan's number one crop.Science 252, 1611.Google Scholar
  9. Cuzzoni, E., Ferretti, L., Giordani, C., Castiglione, S. and Sala, F. (1990) A repeated chromosomal DNA sequence is amplified as a circular extrachromosomal molecule in rice (Oryza sativa L.).Mol. Gen. Genet. 222, 58–64.PubMedGoogle Scholar
  10. Datta, S.K., Datta, K. and Potrykus, I. (1990a) Fertile Indica rice plants regenerated from protoplasts isolated from microspore derived cell suspensions.Pl. Cell Rep. 9, 253–6.Google Scholar
  11. Datta, S.K., Peterhans, A., Datta, K. and Potrykus, I. (1990b) Genetically engineered fertile Indica-rice recovered from protoplasts.Bio/Technology 8, 736–40.CrossRefGoogle Scholar
  12. Davey, M.R., Kothari, S.L., Zhang, H.M., Rech, E.L., Cocking, E.C. and Lynch, P.T. (1991) Transgenic rice: characterisation of protoplast-derived plants and their seed progeny.J. Exp. Bot. 42, 1159–69.Google Scholar
  13. Fukui, K. (1983) Sequential occurrence of mutations in a growing rice callus.Theor. Appl. Genet. 65, 225–30.CrossRefGoogle Scholar
  14. Hayakawa, T., Zhu, Y., Itch, Y., Kimura, Y., Izawa, K., Shimamoto, K. and Toriyama, K. (1992) Genetically engineered rice resistant to rice stripe virus, an insect-transmitted virus.Proc. Nat. Acad. Sci. USA 89, 9865–9.PubMedGoogle Scholar
  15. Schuh, W., Nelson, M.R., Bigelow, D.M., Orum, T.V., Orth, C.E., Lynch, P.T., Eyles, P.S., Blackhall, N.W., Jones, J., Cocking, E.C. and Davey, M.R. (1993) The phenotypic characterisation of R2 generation transgenic rice plants under field conditions.Plant Sci. 89, 69–79.CrossRefGoogle Scholar
  16. Shimamoto, K., Terada, R., Izawa, T. and Fujimoto, H. (1989) Transgenic rice plants regenerated from transformed protoplasts.Nature 338, 247.CrossRefGoogle Scholar
  17. Sneath, P.H.A. and Sokal, R.R. (1973)Numerical Taxonomy. San Francisco, USA: Freeman.Google Scholar
  18. Sun, Z.X., Zhao, C.Z., Zheng, K.L., Qi, X.F. and Fu, Y.P. (1983) Somaclonal genetics of rice,Oryza sativa L.Theor. Appl. Genet. 67, 67–73.CrossRefGoogle Scholar
  19. Van Lijsebetens, M., Vanderhaeghen, R. and Van Montagu, M. (1991) Insertional mutagenesis inArabidopsis thaliana: Isolation of a T-DNA-linked mutation that alters leaf morphology.Theor. Appl. Genet. 81, 277–84.CrossRefGoogle Scholar
  20. Walbot, V. and Cullis, C.A. (1983) The plasticity of the plant genome. Is it a requirement for success?Pl. Mol. Biol. Rep. 1, 3–11.Google Scholar
  21. Walbot, V. and Cullis, C.A. (1985) Rapid genomic changes in higher plants.Ann. Rev. Pl. Physiol. 36, 367–96.CrossRefGoogle Scholar
  22. Wang, G., Castiglione, S., Chen, Y., Li, L., Han, Y., Tian, Y., Gabriel, D.W., Han, Y., Mang, K. and Sala, F. (1996) Poplar (Populus nigra L.) plants transformed with aBacillus thuringiensis toxin gene: insecticidal activity and genomic analysisTransgenic Res. 5, in press.Google Scholar
  23. Welsh, J. and McClelland, M. (1990) Fingerprinting genomes using PCR with arbitrary primers.Nucl. Acids Res. 18, 7213–8.PubMedGoogle Scholar
  24. Williams, J.G., Kubelik, A.R., Livac, K.J., Rafalski, J.A. and Tingey, S.V. (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers.Nucl. Acids Res. 18, 6531–5.PubMedGoogle Scholar
  25. Zambryski, P. (1988) Basic processes underlyingAgrobacterium-mediated DNA transfer to plant cells.Ann. Rev. Genet. 22, 1–30.CrossRefPubMedGoogle Scholar
  26. Zhang, H.M., Yang, H., Rech, E.L., Golds, T.J., Davis, A.S., Mulligan, B.J., Cocking, E.C. and Davey, M.R. (1988) Transgenic rice plants produced by electroporation-mediated plasmid uptake into protoplasts.Pl. Cell Rep. 7, 379–84.Google Scholar
  27. Zheng, K.L., Castiglione, S., Biasini, M.G., Biroli, A., Morandi, C. and Sala, F. (1987) Nuclear DNA amplification in cultured cells ofOryza sativa L.Theor. Appl. Genet. 74, 65–70.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • Phan Huy Bao
    • 1
  • Simona Granata
    • 1
  • Stefano Castiglione
    • 1
  • Gejiao Wang
    • 1
  • Chiara Giordani
    • 1
  • Elena Cuzzoni
    • 1
  • Giuseppe Damiani
    • 2
  • Claudio Bandi
    • 2
  • Swapan K. Datta
    • 3
  • Karabi Datta
    • 3
  • Ingo Potrykus
    • 3
  • Anna Callegarin
    • 4
  • Francesco Sala
    • 1
  1. 1.Consorzio Interuniversitario Nazionale Biologia Molecolare Piante, sez. Università di Paavia c/o Department of Genetics and MicrobiologyUniversityPaviaItaly
  2. 2.IDVGACNR and Istituto Patologia Generale VeterinariaMilanoItaly
  3. 3.Plant Sciences, ETH-ZentrumSwiss Federal Institute for TechnologyZurichSwitzerland
  4. 4.Centro Ricerche sul Riso, Castello d'AgognaPaviaItaly
  5. 5.IRRIManilaPhilippines

Personalised recommendations