Transgenic Research

, Volume 2, Issue 2, pp 115–120

The use of the nonradioactive digoxigenin chemiluminescent technology for plant genomic Southern blot hybridization: A comparison with radioactivity

  • Gabriele Neuhaus-Url
  • Gunther Neuhaus


A nonradioactive labelling and detection method for plant genomic DNA analysis is compared to the radioactive method. The radioisotopes are replaced by a nucleotide, digoxigenin-11-dUTP, and the signal detection is accomplished by the enzymatic reaction of alkaline phosphatase, conjugated to anti-digoxigenin antibodies, with the chemiluminescent substrate AMPPD (3-(2′-spiroadamantane)-4-methoxy-4(3″ phosphorytoxy) phenyl-1, 2-dioxetane). The sensitivity of the radioactive and nonradioactive methods are directly compared using identical Southern blots subjected to the radioactive and nonradioactive detection. The advantages of this nonradioactive method are discussed.


chemiluminescence digoxigenin nonradioactive plant DNA Southern blot hybridization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allefs, I.I.H.M., Salentijn, E.M.I., Krens, F.A. and Rouwendal, G.I.A. (1990) Optimization of non-radioactive Southern blot hybridization: single copy detection and reuse of blots.Nucl. Acids Res. 18, 3099–100.PubMedGoogle Scholar
  2. Bronstein, I., Edwards, B. and Voyta, I.C. (1989a) 1,2-Dioxetanes: novel chemiluminescent enzyme substrates. Application to immunoassays.J. Biolumin. Chemilumin. 4, 99–111.PubMedGoogle Scholar
  3. Bronstein, I., Voyta, I.C. and Edwards, B. (1989b) A comparison of chemiluminescent and colorimetric substrates in a hepatitis B virus DNA hybridization assay.Anal. Biochem. 180, 95–8.PubMedGoogle Scholar
  4. Bronstein, I. and McGrath, P. (1989) Chemiluminescence lights up.Nature 338, 599–600.PubMedGoogle Scholar
  5. Bronstein, I. and Kricka, L.I. (1989) Clinical applications of luminescent assays for enzymes and labels.J. Clinical Lab. Anal. 3, 316–22.Google Scholar
  6. Bronstein, I., Voyta, I.C., Lazzari, K.G., Murphy, O., Edwards, B. and Kricka, L.I. (1990) Rapid and sensitive detection of DNA in Southern blots with chemiluminescence.Bio-Techniques 8, 310–4.Google Scholar
  7. Beck, S., O'Keeffe, T., Coull, M.I., and Köster, H. (1989) Chemiluminescent detection of DNA: application for DNA sequencing and hybridization.Nucl. Acids Res. 17, 5115–23.PubMedGoogle Scholar
  8. Beck, S. and Köster, H. (1990) Applications of Dioxetane chemiluminescent probes to molecular biology.Anal. Chem. 62, 2258–70.PubMedGoogle Scholar
  9. Cate, R.L., Ehrenfels, Ch.W., Wysk, M., Tizard, R., Voyta, I.C., Murphy, O.J., III, and Bronstein, I. (1991) Genomic Southern analysis with alkaline-phosphatase-conjugated oligonucleotide probes and the chemiluminescent substrate AMPPD.Genet. Anal. Tech. Appl. 8, 102–6.PubMedGoogle Scholar
  10. Düring, K. (1991) Ultrasensitive chemiluminescent and colorigenic detection of DNA, RNA and proteins in plant molecular biology:Anal. Biochem. 196, 433–8.PubMedGoogle Scholar
  11. Feinberg, A.P. and Vogelstein, B. (1983) A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity.Anal. Biochem. 132, 6–13.PubMedGoogle Scholar
  12. Höltke, H.I., Sagner, G., Kessler, Ch. and Schmitz G. (1992) Sensitive chemiluminescent detection of Digoxigenin-labelled nucleic acids: a fast and simple protocol and its application.Bio Techniques 12, 104–13.Google Scholar
  13. Ishii, T., Panaud, O., Brar, D.S. and Khush, G.S. (1990) Use of non-radioactive digoxigenin-labelled DNA probes for RFLP analysis in rice.Pl. Mol. Biol. Rep. 8, 167–71.Google Scholar
  14. Kreike, C.M., de Koning, I.R.A. and Krens, F.A. (1990) Non-radioactive detection of single-copy DNA-DNA hybrids.Pl. Mol. Biol. Rep. 8, 172–9.Google Scholar
  15. Karcher, S.I. and Goodner, B.W. (1991) Chemiluminescent detection of multiple copy genes.Focus 12, 110–1.Google Scholar
  16. Lanzillo, I.I. (1991) Chemiluminescent nucleic acid detection with digoxigenin-labelled probes: a model system with probes for angiotensin converting enzyme which detect less than one attomole of target DNA.Anal. Biochem. 194, 45–53.PubMedGoogle Scholar
  17. Maniatis, T., Fritsch, E.F. and Sambrook, I. (1982)Molecular Cloning: a Laboratory Manual, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.Google Scholar
  18. Murray, M.G. and Thompson, W.F. (1980) Rapid isolation of high molecular weight plant DNA.Nucl. Acids Res. 8, 4321–5.PubMedGoogle Scholar
  19. Peterhans, A., Schlüpmann, H., Basse, Ch. and Paszkowsky, J. (1990) Intrachromosomal recombination in plants.EMBO J. 9, 3437–5.PubMedGoogle Scholar
  20. Pollard-Knight, D. (1990) Current methods in nonradioactive nucleic acid labelling and detection.Technique 3, 113–32.Google Scholar
  21. Schnorf, M., Neuhaus-Url, G., Galli, A., Iida, S., Potrykus, I. and Neuhaus, G. (1991) An improved approach for transformation of plant cells by microinjection: molecular and genetic analysis.Transgenic Res. 1, 23–30.PubMedGoogle Scholar
  22. Tizard, R., Cate, L.R., Ramachandran, K.L., Wysk, M., Voyta, I.C., Murphy, O.I., and Bronstein, I. (1990) Imaging of DNA sequences with chemiluminescence.Proc. Natl Acad. Sci. USA 87, 4514–8.PubMedGoogle Scholar
  23. Weising, K., Beyermann, B., Ramser, J. and Kahl, G. (1991) Plant DNA fingerprinting with radioactive and digoxigenated oligonucleotide probes complementary to simple repetitive DNA sequeces.Electrophoresis 12, 159–69.PubMedGoogle Scholar
  24. Zachar, V., Mayer, V., Aboagye-Mathiesen, G., Norskov-Lauritsen, N. and Ebbesen, P. (1991) Enhanced chemiluminescence-based hybridization analysis for PCR-mediated HIV-1 DNA detection offers an alternative to32P-labelled probes.J. Virol. Meth. 33, 391–5.Google Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • Gabriele Neuhaus-Url
    • 1
  • Gunther Neuhaus
    • 1
  1. 1.Institute for Plant SciencesSwiss Federal Institute of Technology ZürichZürichSwitzerland

Personalised recommendations