Hierarchies of number-theoretic functions. I

  • M. H. Löb
  • S. S. Wainer


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    W. Ackermann: Zum Hilbertschen Aufbau der reellen Zahlen. Math. Annalen99 (1928), pp. 118–133.Google Scholar
  2. [2]
    A. Church and S. C. Kleene: Formal Definitions in the Theory of Ordinal Numbers. Fund. Methematicae28(1936), pp. 11–21.Google Scholar
  3. [3]
    J. P. Cleave and H. E. Rose: ℰn-Arithmetic. Sets, Models and Recursion Theory, N. Holland (1967), pp. 297–308.Google Scholar
  4. [4]
    K. Gödel: Consistency-Proof for the Generalized Continuum-Hypothesis. Proc. Nat. Acad. Sci. USA.25 (1939), pp. 220–224.Google Scholar
  5. [5]
    A. Grzegorczyk: Some Classes of Recursive Functions. Rozprawy Matematyczne No.4, Warsaw (1953).Google Scholar
  6. [6]
    S. C. Kleene: Introduction to Metamathematics. Van Nostrand (1952).Google Scholar
  7. [7]
    G. Kreisel: On the Interpretation of Non-Finitist Proofs. J. Symbolic Logic17 (1952), pp. 43–58.Google Scholar
  8. [8]
    G. H. Müller: Charakterisierung einer Klasse von rekursiven Funktionen. Kolloquium „Grundlagen der Math. .... “ Tihany (1962).Google Scholar
  9. [9]
    R. Péter: Recursive Functions. Academic Press (1967).Google Scholar
  10. [10]
    R. Péter: Rekursivität und Konstruktivität, Constructivity in Mathematics, ed. A. Heyting, Amsterdam (1959), pp. 226–233.Google Scholar
  11. [11]
    R. W. Ritchie: Classes of Recursive Functions based on Ackermann's Function. Pacific Journal of Math.15, (iii) (1965), pp. 1027–1044.Google Scholar
  12. [12]
    J. W. Robbin: Ph. D. Dissertation, Princeton University (1965).Google Scholar
  13. [13]
    S. Feferman: Classifications of Recursive Functions by means of Hierarchies. Trans. Amer. Math. Soc.104 (1962), pp. 101–122.Google Scholar

Copyright information

© Verlag W. Kohlhammer 1970

Authors and Affiliations

  • M. H. Löb
  • S. S. Wainer

There are no affiliations available

Personalised recommendations