Advertisement

Pharmaceutisch Weekblad

, Volume 9, Issue 3, pp 172–178 | Cite as

The influence of gamma-irradiation upon the chemical and biological properties of insulin

  • P. J. M. Salemink
  • J. C. Kolkman-Roodbeen
  • T. C. J. Gribnau
  • P. S. L. Janssen
  • A. J. van der Veen
Original Articles

Abstract

Partially purified insulin preparations of bovine and porcine origin, were subjected to gamma-irradiation with doses ranging from 1.0 up to 25 kGy (0.1–2.5 Mrad) at 0‡C or ambient temperature. The susceptibility of insulin to the irradiation was determined by chromatography, electrophoresis and assay of the biological activity. The sterilizing effect of the gamma-irradiation was investigated forBacillus pumilus as well as for artificial mixtures of lactose and several bacilli. It is concluded that the sterilizing dose for the investigated insulins was ⩾ 2.2 kGy. At doses up to 25 kGy at 0‡C no specific radiolytic products were detectable, whereas the biological activity was fully retained. The content of dimers and the content of related peptides appeared to increase gradually with the irradiation dose absorbed. No effects of long-term storage could be demonstrated on biological and chemical properties of insulin after 2.2, 4.5 and 7.5 kGy.

Key words

Chromatography Drug stability Gamma rays Insulin Sterilization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gopal NG. Radiation sterilization of pharmaceuticals and polymers. Radiat Phys Chem 1978;12:35–50.Google Scholar
  2. 2.
    Hoborn J. Die Entwicklung der Etylenoxidsterilisation: technologische Aspekte und toxikologische Sicherheit. J Pharm Technol 1985;6:34–5.Google Scholar
  3. 3.
    WallhÄusser KH. Praxis der Sterilisation — Desinfektion-Konservierung. Stuttgart: Thieme Verlag, 1984:214.Google Scholar
  4. 4.
    Cleland MR. Radiation processing: Basic concepts and practical aspects. J Indust Irradiat Technol 1983;1:191–218.Google Scholar
  5. 5.
    Tsuji K, Rahn PD, Steindler KA.60Co-Irradiation as an alternative method for sterilization of Penicillin G, Neomycin, Novobiocin and Dihydrostreptomycin. J Pharm Sci 1983;72:23–6.PubMedGoogle Scholar
  6. 6.
    Kane MP, Tsuji K. Radiolytic degradation scheme for60Co-irradiated corticosteroids. J Pharm Sci 1983;72:30–5.PubMedGoogle Scholar
  7. 7.
    Bussey DM, Kane MP, Tsuji K. Sterilization of corticosteroids by60Co-irradiation. J Parent Sci Technol 1983;37:51–4.Google Scholar
  8. 8.
    Hornish RE. Paired-ion HPTLC determination of the stability of Novobiocin in Mastitis Products sterilized by60Co-irradiation. J Chromatogr 1982;236:481–8.Google Scholar
  9. 9.
    Nash RA. Radiosterilized Tetracycline ophthalmic ointment. Bull Parenter Drug Assoc 1974;28:181–7.PubMedGoogle Scholar
  10. 10.
    Skierkowski P, Beasley M. Effect of γ-radiation on yield of insulin from beef pancreas glands. J Pharm Sci 1974;63:964–5.PubMedGoogle Scholar
  11. 11.
    Soboleva NN, Ivanova AI, Talrose VL, Trofimov VI, Fedotov VP. Radiation resistivity of frozen insulin solutions and suspensions. Int J Appl Radiat Isot 1981;32:753–6.PubMedGoogle Scholar
  12. 12.
    Kuptsov AK, Trofimov VI. The use of laser spectroscopy of Raman scattering for the study of conformational characteristics of insulin molecules in gamma-irradiated injection solutions. Khim Farm Z 1984;18:748–54.Google Scholar
  13. 13.
    Vidyapina LY, Norievskaya LI, Soboleva NN, Trofimov VI. Electrophoresis of preparations of insulin by a cryoradiation method in polyacrylamide gel. Khim Farm Z 1984;18:990–3.Google Scholar
  14. 14.
    Vorontsova IA, Soboleva NN, Trofimov VI. Determination of the growth of the molecular weight of insulin on gamma irradiation of its solution. Khim Farm Z 1982;16:1373–5.Google Scholar
  15. 15.
    Salemink PJM, Kolkman-Roodbeen JC, Gribnau TCJ, Janssen PSL, Post PC, Van der Veen AJ. RP-HPLC and HP-SEC of gamma-irradiated insulins [Abstract]. Pharm Weekbl [Sci] 1984;6:256.Google Scholar
  16. 16.
    Peter KH. Anwendung der Strahlensterilisation bei der Herstellung Medizinischer Artikel. Pharm Technol 1985;6:13–6.Google Scholar
  17. 17.
    European Pharmacopoeia Commission. European Pharmacopeia. 2nd ed. Strasbourg: Council of Europe, 1980.Google Scholar
  18. 18.
    Anonymous. British Pharmacopoeia. London: Her Majesty's Stationary Office, 1980.Google Scholar
  19. 19.
    Sultanov A, Sharpatyi VA. Khim Vys Energ 1967;1:541–3.Google Scholar
  20. 20.
    Elias PS, Cohen AJ, eds. Recent Advances in Food-Irradiation. Amsterdam: Elsevier Biomedical Press, 1983.Google Scholar
  21. 21.
    US Pharmacopeia XXI. Rockville: US Pharmacopeial Convention, 1985:1349.Google Scholar

Copyright information

© Royal Dutch Association for Advancement of Pharmacy 1987

Authors and Affiliations

  • P. J. M. Salemink
    • 1
  • J. C. Kolkman-Roodbeen
    • 1
  • T. C. J. Gribnau
    • 1
  • P. S. L. Janssen
    • 2
  • A. J. van der Veen
    • 3
  1. 1.Technology DepartmentOrganon International BVBH OssThe Netherlands
  2. 2.Biochemical Pharmacology Research & Development LaboratoriesOrganon International BVOss
  3. 3.Microbiological Research & Development LaboratoriesOrganon International BVOss

Personalised recommendations