Advertisement

Pharmaceutisch Weekblad

, Volume 10, Issue 1, pp 30–50 | Cite as

Abstracts of lectures symposium disposition and delivery of peptide drugs

  • J. W. van Nispen
  • M. Hichens
  • A. Sauter
  • H. Lingeman
  • D. C. Cubbins
  • C. McMartin
  • R. L. Webb
  • L. P. Wennogle
  • H. E. Wysowskyi
  • M. B. Zimmerman
  • V. H. L. Lee
  • J. Sandow
  • H. Seidel
  • R. Schmiedel
  • Bradley T. Keller
  • Kevin R. Smith
  • Ronald T. Borchardt
  • W. A. Banks
  • A. J. Kastin
  • D. de Wied
  • P. P. DeLuca
  • J. R. Robinson
  • S. Lundin
  • H. Vilhardt
  • M. Saffran
  • G. S. Kumar
  • D. G. Neckers
  • F. Williams
  • J. B. Field
  • R. H. Jones
  • L. Panepinto
  • A. S. Harris
  • Alan C. Moses
  • S. Muranishi
  • H. E. Boddé
  • M. Ponec
  • J. Verhoef
  • Gary G. Liversidge
  • G. J. Boer
  • J. Kruisbrink
  • H. de Nijs
  • T. R. M. Bouwman
  • M. J. D. Eenink
  • Harish M. Patel
Article
  • 51 Downloads

Conclusions

A number of different processes clear peptides from the circulation. These will be described and illustrated using examples from a range of peptide hormones and analogues.

Keywords

Public Health Peptide Internal Medicine Peptide Hormone Peptide Drug 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

enk

enkephalin

CCK

cholecystokinin

NT

neurotensin

SST

somatostatin

LHRH

luteinizing hormone-releasing hormone

AVP

vasopressin

OXT

oxytocin

RP

reversed phase

AX

anionexchange

I

isocratic

G

gradient

CS

column switching

SC

sequential columns

a)

potential in volts vs Ag/AgCl

b)

reduction followed by oxidation (dual electrode)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kissinger PT, Refshauge CJ, Dreiling R, Adams RN. An electrochemical detector for liquid chromatography with picogram sensitivity. Anal Lett 1973;6:465–77.Google Scholar
  2. 2.
    Refshauge CJ, Kissinger PT, Dreiling R, Blank L, Freeman R, Adams RN. New high performance liquid chromatographic analysis of brain catecholamines. Life Sci 1974;14:311–22.CrossRefPubMedGoogle Scholar
  3. 3.
    Bennett GW, Brazell MP, Marsden CA. Electrochemistry of neuropeptides: a possible method for assay and in vivo detection. Life Sci 1981;29:1001–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Nabeshima T, Hiramatsu M, Noma S, Ukai M, Kameyama T. Determination of methionine enkephalin, norepinephrine, dopamine, DOPAC and HVA in brain by high-pressure liquid chromatography with electrochemical detector. Res Commun Chem Pathol Pharmacol 1982;35:421–42.PubMedGoogle Scholar
  5. 5.
    Mousa S, Couri D. Analysis of enkephalins, β-endorphins and small peptides in their sequences by highly sensitive high-performance liquid chromatography with electrochemical detection: implications in opioid peptide metabolism. J Chromatogr 1983;267:191–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Sauter A, Frick W. Determination of cholecystokinin tetrapeptide and cholecystokinin octapeptide sulfate in different rat brain regions by high-pressure liquid chromatography with electrochemical detection. Anal Biochem 1983;133:307–13.CrossRefPubMedGoogle Scholar
  7. 7.
    Johnson JV, Bennet GW, Marsden CA, Gardiner SM, Bennett T. Electro-chemical measurement of neurohypophyseal peptide levels in rat hypothalamic regions after adrenalectomy. Clin Exp Hypertens [A] 1984;6: 1993–8.Google Scholar
  8. 8.
    Fleming LH, Reynolds NC. Separation and detection of endorphins by liquid chromatography-electrochemistry. J Liq Chromatogr 1984;7:793–808.Google Scholar
  9. 9.
    Sauter A, Frick W. Determination of neuropeptides in discrete regions of the rat brain by high-performance liquid chromatography with electrochemical detection. J Chromatogr 1984;297:215–23.CrossRefPubMedGoogle Scholar
  10. 10.
    Drumheller AL, Bachelard H, St-Pierre S, Jolicoeur FB. Determination of picomole levels of neurotensin, bombesin, and related peptide fragments using gradient elution high performance liquid chromatography coupled with electrochemical detection. J Liq Chromatogr 1985;8:1829–43.Google Scholar
  11. 11.
    Mousa SA, Van Loon GR. Measurement of proenkephalin A-derived peptides in biological tissues by high pressure liquid chromatography coupled with amperometric electrochemical detection. Life Sci 1985;37: 1795–802.CrossRefPubMedGoogle Scholar
  12. 12.
    Sauter A, Enz A, Siegel RA. Simultaneous determination of SST, SST-28 and LHRH in rat median eminence (ME) by HPLC with electrochemical detection (ECD). Experientia 1985;41:789.Google Scholar
  13. 13.
    Siegel RA, Sauter A, Enz A. Determination of LHRH in rat median eminence (ME) by HPLC with electrochemical detection (ECD). Experientia 1985;41:790.Google Scholar
  14. 14.
    Dawson R, Steves JP, Lorden JF, Oparil S.h Reversephase separation and electrochemical detection of neuropeptides. Peptides 1985;6:1173–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Fleming LH, Reynolds NC. Separation and detection of closely related endorphins by liquid chromatographyelectrochemistry. J Chromatogr 1986;375:65–73.PubMedGoogle Scholar
  16. 16.
    Garvie CT, Straub KM, Lynn RK. Quantitative liquid chromatographic determination of disulfide-containing peptide analogues of vasopressin with dual Hg/Au electrochemical detection. J Chromatogr 1987;413:43–52.PubMedGoogle Scholar
  17. 17.
    Krull IS, Selavka CM, Duda C, Jacobs W. Derivatization and post-column reactions for improved detection in liquid chromatography/electrochemistry. J Liq Chromatogr 1985;8:2845–70.Google Scholar
  18. 18.
    Joseph MH, Davies P. Electrochemical activity of o-phthalaldehyde-mercapto-ethanol derivatives of amino acids. J Chromatogr 1983;277:125–36.PubMedGoogle Scholar

References

  1. 1a.
    Fridland G, Desiderio DM. Profiling of neuropeptides using gradient reversed-phase high-performance liquid chromatography with novel detection methodologies. J Chromatogr 1986;379:251–68.PubMedGoogle Scholar
  2. 2a.
    Desiderio DM. Analysis of neuropeptides by liquid chromatography and mass spectrometry. Amsterdam: Elsevier, 1984.Google Scholar
  3. 3a.
    Tanzer FS, Tolun E, Fridland G, Dass C, Killmar J, Tinsley P, Desiderio DM. Methionine-enkephalin peptides in human teeth. Int J Pept Prot Res (in press).Google Scholar
  4. 4a.
    Takeshita H, Desiderio DM, Fridland G. Metabolic profiling of opioid peptides in canine pituitary and selected brain regions. Biomed Chromatogr 1986;1:126–39.CrossRefPubMedGoogle Scholar
  5. 5a.
    Ahmed MS, Randall LW, Sibai B, Dass C, Fridland G, Desiderio DM, Tolun E. Identification of dynorphin 1–8 in human placenta by mass spectrometry. Life Sci 1987;40:2067–74.CrossRefPubMedGoogle Scholar
  6. 6a.
    Dass C, Desiderio DM. The measurement of leucine enkephalin at the femtomole level by fast atom bombardment mass spectrometry/mass spectrometry methods. Anal Lett 1986;19:1963–71.Google Scholar
  7. 7a.
    Dass C, Fridland G, Tinsley PW, Killmar JT, Desiderio DM. Structural characterization and quantitation of β-endorphin in human pituitary by fast atom bombardment mass spectrometry of trypsin-generated fragments. Anal Biochem (in press).Google Scholar

References

  1. 1b.
    Katsube N, Schwartz D, Needleman P. Atriopeptin turnover: quantitative relationship between in vivo changes in plasma levels and atrial content. J Pharmacol Exp Ther 1986;239:474–8.PubMedGoogle Scholar
  2. 2b.
    Murthy KK, Thibault G, Garcia R, Gutkowska J, Genest J, Cantin M. Degradation of atrial natriuretic factor in the rat. Biochem J 1986;240:461–9.PubMedGoogle Scholar
  3. 3b.
    Bennett HPJ, McMartin C. Peptide hormones and their analogues: distribution, clearance from the circulation and inactivation in vivo. Pharmacol Rev 1979;30:247–92.Google Scholar
  4. 4b.
    Crozier IG, Nicholls MG, Ikram H, Espiner EA, Yandle TG, Jans S. Atrial natriuretic peptide in humans. Production and clearance by various tissues. Hypertension 1986;8(suppl II):11–5.PubMedGoogle Scholar

References

  1. 5b.
    Dodda Kashi S, Lee VHL. Enkephalin hydrolysis in homogenates of various absorptive mucosae of the albino rabbit: similarities in rates and involvement of aminopeptidases. Life Sci 1986;38:2019–28.CrossRefPubMedGoogle Scholar
  2. 6b.
    Statford RE, Lee VHL. Aminopeptidase activity in homogenates of various absorptive mucosae in the albino rabbit: implicatons in peptide delivery. Int J Pharm 1986;30:73–82.CrossRefGoogle Scholar

References

  1. 7b.
    Burbach JPH. Action of proteolytic enzymes on lipotropins and endorphins: biosynthesis, biotransformation and fate. In: De Wied D, Gispen WH, Van Wimersma Greidanus TjB, eds. Neuropeptides and behavior. Vol. 1. Oxford: Pergamon Press, 1986:43–76.Google Scholar
  2. 8b.
    De Wied D. Effects of peptide hormones on behavior. In: Ganong WF, Martini L, eds. Frontiers in neuroendocrinology. London: Oxford University Press, 1969:97–140.Google Scholar
  3. 9b.
    De Wied D. Neurohypophyseal hormone influences on learning and memory processes. In: Lynch G, McCaugh JL, Weinberger NM, eds. Neurobiology of learning and memory. New York: Guilford Press, 1984:289–312.Google Scholar
  4. 10b.
    De Wied D. The neuropeptide concept. Progr Brain Res 1987;72:93–108.Google Scholar
  5. 11b.
    De Wied D, Jolles J. Neuropeptides derived from proopiocortin: behavioural, physiological, and neurochemical effects. Physiol Rev 1982;62:976–1059.PubMedGoogle Scholar
  6. 12b.
    Gispen WH, Isaacson RL. Excessive grooming in response to ACTH. In: De Wied D, Gispen WH, Van Wimersma Greidanus TjB, eds. Neuropeptides and behavior. Vol. 1. Oxford: Pergamon Press, 1986:273–312.Google Scholar
  7. 13b.
    Strand FL, Smith CM. LPH, ACTH, MSH and motor systems. In: De Wied D, Gispen WH, Van Wimersma Greidanus TjB, eds. Neuropeptides and behavior. Vol. 1. Oxford: Pergamon Press, 1986:245–72.Google Scholar
  8. 14b.
    Swaab DF, Martin JT. Functions of α-melanotropin and other opiomelanocortin peptides in labour, intrauterine growth and brain development. In: Evered D, Lawrenson G, eds. Peptides of the pars intermedia. Ciba Foundation Symposium 81. London: Pitman Medical, 1981:196–217.Google Scholar
  9. 15b.
    Van Ree JM. Non-opiate β-endorphin fragments and dopamine II. β-Endorphin 2–9 enhances apomorphineinduced stereotype following subcutaneous and intrastriatal injection. Neuropharmacology 1982;21:1103–9.CrossRefPubMedGoogle Scholar

References

  1. 16b.
    Lundin S, Melin P, Vilhardt H. Plasma concentrations of 1-deamino-8-D-arginine vasopressin after intragastric administration in the rat. Acta Endocrinol 1985; 108:179–83.PubMedGoogle Scholar
  2. 17b.
    Lundin S, Vilhardt H. Absorption of intragastrically administered DDAVP in conscious dogs. Life Sci 1986;38:703–9.CrossRefPubMedGoogle Scholar
  3. 18b.
    Vilhardt H, Lundin S. In vitro intestinal transport of vasopressin and its analogues. Acta Physiol Scand 1986;126:601–7.PubMedGoogle Scholar
  4. 19b.
    Lundin S, Vilhardt H. Absorption of 1-deamino-8-D-arginine vasopressin from different regions of the gastrointestinal tract in rabbits. Acta Endocrinol 1986;112:-457–60.PubMedGoogle Scholar
  5. 20b.
    Vilhardt H, Lundin S, Falck J. Biological effect and plasma concentrations of DDAVP after intranasal and peroral administration to humans. Gen Pharmacol 1986;17:481–3.PubMedGoogle Scholar

References

  1. 1c.
    Harris AS, Nilsson IM, Wagner ZG, Alkner U. Intranasal administration of peptides: nasal deposition, biological response, and absorption of desmopressin. J. Pharm Sci 1986;11:1085–8.Google Scholar
  2. 2c.
    Harris AS. Biopharmaceutical aspects on the intranasal administration of peptides. In: Davis SS, Illum L, Tomlinson E, eds. Delivery systems for peptide drugs. New York: Plenum Press, 1986:191–204.Google Scholar
  3. 3c.
    Salzman R, Manson JE, Griffing GT, Kimmerle R, Ruderman N, McCall A, Stoltz EI, Mullin C, Small R, Armstrong J, Melby JC. Intranasal aerosolized insulin: mixed-meal studies and long-term use in type I Diabetes. N Engl J Med 1985;312:1078–84.PubMedGoogle Scholar

References

  1. 4c.
    Muranishi S. Modification of intestinal absorption of drugs by lipoidal adjuvants. Pharm Res 1985;2:108–18.CrossRefGoogle Scholar

Literature

  1. 1d.
    Rudman CG, Parsons JA. Transdermal uptake of a peptide hormone: inhibition by calcitonin eardrops of induced osteolysis in guinea-pig ossicles. Experientia 1979;35:521–2.PubMedGoogle Scholar
  2. 2d.
    Hurkmans JFGM, Boddé HE, Van Driel LMJ, Van Doorne H, Junginger HE. Skin irritation caused by transdermal drug delivery systems during long-term (5 days) application. Br J Dermatol 1985;112:461–7.PubMedGoogle Scholar
  3. 3d.
    Roorda WE, Boddé HE, Bouwstra JA, De Boer AG, Junginger HE. Synthetic hydrogels as drug delivery systems. Pharm Weekbl [Sci] 1986;8:165–89.Google Scholar

References

  1. 1e.
    Worthy W. Versatile microporous polymers developed. Chem Engl News 1978;56:23–4.Google Scholar
  2. 2e.
    Schneider K. Mikroporöse Polymere. Kunststoffe 1981; 71:183–4.Google Scholar
  3. 3e.
    Boer GJ, Kruisbrink J, Van Pelt-Heerschap H. Longterm and constant release of vasopressin from Accurel tubing: implantation in the Brattleboro rat. J Endocrinol 1983;98:147–52.PubMedGoogle Scholar
  4. 4e.
    Kruisbrink J, Boer GJ. Controlled long-term release of small peptide homones using a new microporous polypropylene polymer: its application for vasopressin in the Brattleboro rat and potential perinatal use. J Pharm Sci 1984;73:1713–8.PubMedGoogle Scholar
  5. 5e.
    Boer GJ, Kruisbrink J. A polymeric controlled drug delivery device for peptides based on a surface desorption/diffusion mechanism. Biomaterials 1987;8:265–74.CrossRefPubMedGoogle Scholar
  6. 6e.
    Kruisbrink J, Boer GJ. The use of [3H] vasopressin for in vivo studies of controlled delivery from an Accurel/ collodion device in the Brattleboro rat. J Pharm Pharmacol 1986;38:893–7.PubMedGoogle Scholar

References

  1. 1f.
    Kwong AK, Chou S, Sun AM, Sefton MV, Goosen MFA. In vitro and in vivo release of insulin from poly (lactic acid) microbeads and pellets. J Control Rel 1986; 4:47–62.CrossRefGoogle Scholar
  2. 2f.
    Lin SY, Ho LT, Chiou HL. Microencapsulation and controlled release of insulin from polylactic acid microcapsules. Biomater Med Devices Artif Organs 1986;13: 187–201.Google Scholar

References

  1. 1g.
    Alving CR. Delivery of liposome encapsulated drugs to macrophages. Pharmacol Ther 1983;22:407–34.CrossRefPubMedGoogle Scholar
  2. 2g.
    Pastan I, Willingham MC. Receptor-mediated endocytosis: coated pits, receptosomes and the Golgi. Trends Biochem Sci 1983;8:250–4.CrossRefGoogle Scholar
  3. 3g.
    Patel HM, Ryman BE. Chapter 11. In: Knigh CG, ed. Liposomes: from physical structure to therapeutic application. Amsterdam: Elsevier, 1981:409–41.Google Scholar
  4. 4g.
    Patel HM, Tuzel NS, Stevenson RW. Intracellular digestion of saturated and unsaturated phospholipid liposomes by mucosal cells: possible mechanism of transport of liposomally entrapped macromolecules across the isolated vascularly perfused rabbit ileum. Biochim Biophys Acta 1985;839:40–9.PubMedGoogle Scholar
  5. 5g.
    Schroit AJ, Galligioni E, Fidler IJ. Factors influencing the in situ activation of macrophages by liposomes containing muramyl dipeptide. Biol Cell 1983;47:87–94.Google Scholar
  6. 6g.
    Wild A. Transport of immunoglobulins and other proteins from mother to young. In: Dingle JT, ed. Liposomes in biology and pathology. Amsterdam: Elsevier, 1983:169–233.Google Scholar

Copyright information

© Bohn, Scheltema & Holkema 1988

Authors and Affiliations

  • J. W. van Nispen
    • 1
  • M. Hichens
    • 2
  • A. Sauter
    • 3
  • H. Lingeman
    • 4
  • D. C. Cubbins
    • 5
  • C. McMartin
    • 6
  • R. L. Webb
    • 6
  • L. P. Wennogle
    • 6
  • H. E. Wysowskyi
    • 6
  • M. B. Zimmerman
    • 6
  • V. H. L. Lee
    • 7
  • J. Sandow
    • 8
  • H. Seidel
    • 8
  • R. Schmiedel
    • 8
  • Bradley T. Keller
    • 9
  • Kevin R. Smith
    • 9
  • Ronald T. Borchardt
    • 9
  • W. A. Banks
    • 10
  • A. J. Kastin
    • 10
  • D. de Wied
    • 11
  • P. P. DeLuca
    • 12
  • J. R. Robinson
    • 13
  • S. Lundin
    • 14
  • H. Vilhardt
    • 15
  • M. Saffran
    • 16
  • G. S. Kumar
    • 16
  • D. G. Neckers
    • 16
  • F. Williams
    • 16
  • J. B. Field
    • 16
  • R. H. Jones
    • 17
  • L. Panepinto
    • 18
  • A. S. Harris
    • 17
  • Alan C. Moses
    • 18
  • S. Muranishi
    • 19
  • H. E. Boddé
    • 20
  • M. Ponec
    • 21
  • J. Verhoef
    • 20
  • Gary G. Liversidge
    • 22
  • G. J. Boer
    • 23
  • J. Kruisbrink
    • 23
  • H. de Nijs
    • 24
  • T. R. M. Bouwman
    • 24
  • M. J. D. Eenink
    • 24
  • Harish M. Patel
    • 24
  1. 1.Organon Scientific Development GroupOssthe Netherlands
  2. 2.Merck Sharp & Dohme Research LaboratoriesWest PointUSA
  3. 3.Preclinical ResearchBasleSwitzerland
  4. 4.Center for Bio-Pharmaceutical Sciences, Division of Analytical ChemistryLeiden UniversityRA LeidenThe Netherlands
  5. 5.University of TennesseeMemphis800 Madison AvenueUSA
  6. 6.Research DepartmentCiba-Geigy Co.SummityUSA
  7. 7.University of Southern CaliforniaSchool of PharmacyLos AngelesUSA
  8. 8.Hoechst AGFrankfurt 80Germany
  9. 9.Department of Pharmaceutical ChemistryUniversity of KansasLawrenceUSA
  10. 10.Psychoneuroendocrinology Laboratory (151)Veterans Administration Medical Center and Tulane University School of MedicineNew OrleansUSA
  11. 11.College of PharmacyUniversity of KentuckyKentuckyLexingtonUSA
  12. 12.School of PharmacyUniversity of WisconsinMadisonUSA
  13. 13.Department of Clinical PharmacologyLund University HospitalLundSweden
  14. 14.Department of Medical Physiology CUniversity of CopenhagenDenmark
  15. 15.Department of BiochemistryMedical College of OhioToledoUSA
  16. 16.Ferring PharmaceuticalsMalmöSweden
  17. 17.Diabetes Unit, Beth Israel Hospitalabetes Unit, Beth Israel Hospital UnitHarvard Medical SchoolBostonUSA
  18. 18.Kyoto Pharmaceutical UniversityYamanshinaku, KyotoJapan
  19. 19.Center for Bio-Pharmaceutical SciencesRA Leidenthe Netherlands
  20. 20.Dermatology DepartmentUniversity HospitalAA Leidenthe Netherlands
  21. 21.Smith Kline & French Labs. R & DDepartment of Drug DeliverySwedelandUSA
  22. 22.Netherlands Institute for Brain ResearchAmsterdam ZOthe Netherlands
  23. 23.Organon International BVP.O. Box 20Ossthe Netherlands
  24. 24.Department of BiochemistryCharing Cross and Westminster Medical SchoolLondonUK

Personalised recommendations