Advertisement

Pharmaceutisch Weekblad

, Volume 13, Issue 1, pp 7–12 | Cite as

Pharmacology of long-term potentiation

A model for learning reviewed
  • Margot Beukers
  • Erik W. G. M. Boddeke
Reviews

Abstract

Long-term potentiation is widely used as a model for memory formation. Recently, much information concerning this topic like the involvement of protein kinase C, arachidonic acid andN-methyl-d-aspartate receptors has been reported. In this review recent discoveries concerning long-term potentiation and the pharmacological implications for the development of cognition-enhancing drugs are discussed.

Keywords

Drugs Memory, long-term Pharmacology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cajal SR. Histologie du système nerveux de l'homme et des vertebres. Vol. II. Paris: Malone, 1911.Google Scholar
  2. 2.
    Hebb DO. The organization of behaviour. New York: John Wiley & Sons, 1949:86–98.Google Scholar
  3. 3.
    Milner B. Disorders of learning and memory after temporal lobe lesions in man. Clin Neurosurg 1972;19:421–46.Google Scholar
  4. 4.
    Squire LR. Mechanisms of memory. Science 1986;232:1612–9.Google Scholar
  5. 5.
    Zola-Morgan S, Squire LR, Amaral DG. Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. J Neurosci 1986;6:2950–67.Google Scholar
  6. 6.
    Lømo T. Frequency potentiation of excitatory synaptic activity in the dentate area of the hippocampal formation. Acta Physiol Scand 1966;68:128–36.Google Scholar
  7. 7.
    Bliss TVP, Lømo T. Long-lasting potentiation of synaptic transmission in the dentate of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 1973;232:331–56.Google Scholar
  8. 8.
    Teyler TJ, Discenna P. Long-term potentiation as a candidate mnemonic device. Brain Res Rev 1984;7:15–28.Google Scholar
  9. 9.
    Collingridge GL. Long-term potentiation in the hippocampus: mechanisms of initiation and modulation by neurotransmitters. TiPS 1985;6:407–11.Google Scholar
  10. 10.
    Linden DJ, Routtenberg A. The role of protein kinase C in long-term potentiation: a testable model. Brain Res Rev 1989;14:279–96.Google Scholar
  11. 11.
    Lynch MA, Errington ML, Bliss TVP. Nordihydroguaiaretic acid blocks the synaptic component of long-term potentiation and the associated increases in release of glutamate and arachidonate: anin vivo study in the dentate gyrus of the rat. Neuroscience 1989;30:693–701.Google Scholar
  12. 12.
    Dolphin AC, Errington ML, Bliss TVP. Long-term potentiation of the perforant pathin vivo is associated with increased glutamate release. Nature 1982;297:496–8.Google Scholar
  13. 13.
    Malinow R, Tsien RW. Presynaptic enhancement by whole cell recordings of long-term potentiation in hippocampal slices. Nature 1990;346:177–80.Google Scholar
  14. 14.
    Ascher P, Nowak L. Electrophysiological studies of NMDA receptors. Trends Neurosci 1987;10:284–8.Google Scholar
  15. 15.
    Watkins JC, Krogsgaard-Larsen P, Honore T. Structure—activity relationships in the development of excitatory amino acid receptor agonists and competitive antagonists. TiPS 1990;11:25–33.Google Scholar
  16. 16.
    Johnson JW, Ascher P. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 1987;325:529–31.Google Scholar
  17. 17.
    Kleckner NW, Dingledine R. Requirement for glycine of NMDA-receptors expressed in xenopus oocytes. Science 1988;241:835–7.Google Scholar
  18. 18.
    Nicoll RA, Kauer JA, Malenka RC. The current excitement in long-term potentiation. Neuron 1988;1:97–103.Google Scholar
  19. 19.
    Collingridge GL, Bliss TVP. NMDA receptors: their role in long-term potentiation. Trends Neurosci 1987;10:288–93.Google Scholar
  20. 20.
    Harris EW, Cotman CW. Long-term potentiation of guinea pig mossy fibre responses is not blocked byN-methyl-D-aspartate antagonists. Neurosci Lett 1986;70:132–7.Google Scholar
  21. 21.
    Cotman CW, Monaghan DT, Ottersen OP, Storm-Matthisen J. Anatomical organization of excitatory amino acid receptors and their pathway. Trends Neurosci 1987;10:273–80.Google Scholar
  22. 22.
    Dunnett SB. Comparative effects of cholinergic drugs and lesions of nucleus basalis of fimbria-fornix on delayed matching in rats. Psychopharmacology 1985;87:357–63.Google Scholar
  23. 23.
    Williams S, Johnston D. Muscarinic depression of long-term potentiation in CA3 hippocampal neurons. Science 1988;242:84–7.Google Scholar
  24. 24.
    Hirotsu I, Hori N, Katsuda N, Ishihara T. Effect of anticholinergic drug on long-term potentiation in rat hippocampal slices. Brain Res 1989;482:194–7.Google Scholar
  25. 25.
    Beukers M, Meigel I, Boddeke HWGM. Effect of M1 muscarinic receptors on long-term potentiation in rat hippocampal slices. Pharm Weekbl [Sci] 1989;11 (Suppl J):J3.Google Scholar
  26. 26.
    Saito H, Togashi H, Matsumoto M, Morii K, Yoshioka M. Effect of a novel muscarinic agonist of the M1-type receptor on memory impairment in vascular dementiaanimals. Eur J Pharmacol 1990;183:930.Google Scholar
  27. 27.
    Kojima J, Yoshida S, Ishii Y, Fujii K, Okumura M. Effects of NIK-247 and 9-amino-1,2,3,4,-tetrahydroacridine on scopolamine-induced amnesia, long-term potentiation and acetylcholinesterase. Eur J Pharmacol 1990;183:929.Google Scholar
  28. 28.
    Stanton PK, Sarvey JM. Depletion of norepinephrine, but not serotonin, reduces long-term potentiation in the dentate gyrus of rat hippocampal slices. J Neurosci 1985;5:2169–76.Google Scholar
  29. 29.
    Stanton PK, Sarvey JM. Blockade of norepinephrineinduced long-lasting potentiation in the hippocampal dentate gyrus by an inhibitor of protein synthesis. Brain Res 1985;361:276–83.Google Scholar
  30. 30.
    Hopkins WF, Johnston D. Frequency-dependent noradrenergic modulation of long-term potentiation in the hippocampus. Science 1984;226:350–2.Google Scholar
  31. 31.
    Ito I, Okada D, Sugiyama H. Pertussis toxin suppresses long-term potentiation of hippocampal mossy fibre synapses. Neurosci Lett 1988;90:181–5.Google Scholar
  32. 32.
    Gribkoff VK, Ashe JH. Modulation by dopamine of population response and cell membrane properties of hippocampal CA1 neuronsin vitro. Brain Res 1984;292:327–38.Google Scholar
  33. 33.
    Van den Hoof P, Urban IJA, De Wied D. Vasopressin maintains long-term potentiation in rat lateral septum slices. Brain Res 1989;423:181–6.Google Scholar
  34. 34.
    Lynch G, Errington MA, Clements M, Bliss TVP. Intracellular injections of EGTA block induction of hippocampal long term potentiation. Nature 1983;305:719–21.Google Scholar
  35. 35.
    Gustafson B, Wigström H, Abraham WC, Huang YY. Long-term potentiation in the hippocampus using depolarizing current pulses as the conditioning stimulus to single volley synaptic potentials. J Neurosci 1987;7:774–80.Google Scholar
  36. 36.
    Kauer JA, Nicoll RA. An APV resistant nonassociative form of long-term potentiation in the rat hippocampus. Exp Brain Res 1988;107:45–63.Google Scholar
  37. 37.
    Williams JH, Errington ML, Lynch MA, Bliss TVP. Arachidonic acid induces a long-term activity dependent enhancement of synaptic transmission in the hippocampus. Nature 1989;341:739–41.Google Scholar
  38. 38.
    Kuo-Ping Huang. The mechanism of protein kinase C activation. Trends Neurosci 1989;12:425–32.Google Scholar
  39. 39.
    Linden DL, Sheu FS, Murakami K, Routtenberg A. Enhancement of long-term potentiation by cis-unsaturated fatty acid: relation to protein kinase C and phospholipase A2. J Neurosci 1987;7:3783–92.Google Scholar
  40. 40.
    Lynch MA, Errington ML, Bliss TVP. Nordihydroguaiaretic acid blocks the synaptic component of long-term potentiation and the associated increases in release of glutamate and arachidonate: anin vivo study in the dentate gyrus of the rat. Neuroscience 1989;30:693–701.Google Scholar
  41. 41.
    Williams JH, Bliss TVP. Induction but not maintenance, of calcium-induced long-term potentiation is blocked by nordihydroguaiaretic acid. Neurosci Lett 1988;88:81–5.Google Scholar
  42. 42.
    Williams JH, Bliss TVP. Anin vitro study of the effect of lipoxygenase and cyclo-oxygenase inhibitors of arachidonic acid on the induction and maintenance of long-term potentiation in the hippocampus. Neurosci Lett 1989;107:301–6.Google Scholar
  43. 43.
    Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumor promotion. Nature 1984;308:639–40.Google Scholar
  44. 44.
    Reymann KG, Schulzeck K, Kase H, Matthies H. Phorbol ester-induced hippocampal long-term potentiation is counteracted by inhibitors of protein kinase C. Exp Brain Res 1988;71:227–30.Google Scholar
  45. 45.
    Muller D, Turnbull J, Baudry M, Lynch G. Phorbol ester-induced synaptic facilitation is different than long-term potentiation. Proc Natl Acad Sci 1988;85:6997–7000.Google Scholar
  46. 46.
    Hu GY, Hvalby Ø, Walaas SI, et al. Protein kinase C injection into hippocampal pyramidal cells elicits features of long-term potentiation. Nature 1987;324:426–9.Google Scholar
  47. 47.
    Lovinger D, Colley PA, Akers RF, Nelson RB, Routtenberg A. Direct relation of long-term synaptic potentiation to phosphorylation of membrane protein F1, a substrate for membrane protein kinase C. Brain Res 1986;399:205–13.Google Scholar
  48. 48.
    Nelson RB, Linden DJ, Routtenberg A. Phosphoproteins localized to presynaptic terminal linked to persistence of long-term potentiation (LTP): quantitative analysis of two dimensional gels. Brain Res 1989;497:30–42.Google Scholar
  49. 49.
    Reyman KG, Schulzeck K, Kase H, Matthies H. Phorbol ester-induced hippocampal long-term potentiation is counteracted by inhibitors of protein kinase C. Exp Brain Res 1988;71:227–30.Google Scholar
  50. 50.
    Malenka RC, Kauer JA, Perkel DJ, et al. An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation. Nature 1989;340:554–7.Google Scholar
  51. 51.
    Mondadori C, Petschke F, Haeusler A. The effects of nootropics on memory. New aspects for basic research. Pharmacopsychiatry 1989;22:102–6.Google Scholar
  52. 52.
    Satoh M, Ishihara K, Katsuki H. Different susceptibility of long-term potentiation in CA3 and CA1 regions of guinea pig hippocampal slices to nootropic drugs. Neurosci Lett 1988;93:236–41.Google Scholar
  53. 53.
    Nickolson VJ, Wolthuis OL. Effect of the acquisitionenhancing drug piracetam on rat cerebral energy metabolism. Comparison with naphtidrofuryl and methamphetamine. Biochem Pharmacol 1976;25:41–4.Google Scholar
  54. 54.
    Woelk H. Effects of piracetam on the incorporation of32p into the phospholipids of neurons and glial cells isolated from rabbit cerebral cortex. Pharmacopsychiatry 1979;12:251–6.Google Scholar
  55. 55.
    Pugsley TABH, Poschel PH, Dowens DA, Shih YH, Gluckman MI. Some pharmacological and neurochemical properties of a new cognition activator agent, piracetam (CI-879). Psychopharmacol Bull 1983;19:721–6.Google Scholar
  56. 56.
    Mattson RJ, Moon SL. Agents for the treatment of cognitive disorders. Ann Rep Med Chem 1988;28:519–45.Google Scholar
  57. 57.
    Hagihara M, Nagatsu T. Post-proline cleaving enzyme in human cerebrospinal fluid from control patients and parkinsonian patients. Biochem Med Metab Biol 1987;38:387–91.Google Scholar
  58. 58.
    Cherubini E, Ben Ari Y, Gho M, Bidard JN, Lazdunski M. Long-term potentiation of synaptic transmission in the hippocampus induced by a bee venom peptide. Nature 1987;328:70–3.Google Scholar
  59. 59.
    Ben Ari Y, Cherubini E, Aniksztejn L, Roitsin MP, Charriaut-Marlangue C. Mechanism of induction of long-term potentiation by the mast cell degranulating peptide. Pharmacopsychiatry 1989;22:107–10.Google Scholar
  60. 60.
    Herrling P. Clinical implications of NMDA receptors. In: Watkins J, Collingridge G, eds. The NMDA receptor. Oxford: Oxford University Press, 1989:23–39.Google Scholar
  61. 61.
    Enz A, Amstutz R, Hofmann A, Gmelin G, Kelly P. Pharmacological properties of the centrally acting acetylcholinesterase inhibitor SDZ ENA-713. In: Kewitz J, Thomson EF, Bickel P, eds. Clinical pharmacology. Munich: Zuckwerdt Verlag, 1988:271–7. (Pharmacological intervention on central cholinergic mechanisms in senile dementia; vol. 2).Google Scholar
  62. 62.
    Yamanishi Y, Ogura H, Uchikoshi K, Sawa Y, Yamatsu K. Inhibitory action of E2020, a novel acetylcholinesterase inhibitor, on cholinesterase in aged rats. Eur J Pharmacol 1990;183:1935.Google Scholar

Copyright information

© Royal Dutch Association for Advancement of Pharmacy 1991

Authors and Affiliations

  • Margot Beukers
    • 1
  • Erik W. G. M. Boddeke
    • 2
  1. 1.Division of Medicinal ChemistryGorlaeus LaboratoriesRA LeidenThe Netherlands
  2. 2.Sandoz PharmaSandoz Preclinical ResearchBasleSwitzerland

Personalised recommendations