Host-parasite interaction in fungal infections

  • N. Khardori
Current Topic: Review


The outcome of host-parasite interactions in fungal infections is determined by the balance between pathogenicity of the organism and the adequacy of the host defenses. A wide variety of host defense mechanisms are involved in protection against fungal infections. These include nonspecific mechanisms such as intact skin and mucus membranes, indigenous microbial flora, and the fungicidal activity of neutrophils and monocytes. Such mechanisms constitute the major host defense against opportunistic fungal infections caused by ubiquitous organisms of low virulence. The effective role of immunoglobulins and complement as opsonins varies with the fungal pathogen involved. Specific immune responses of both the humoral and cell-mediated type develop in response to infections by pathogenic fungi. Antibodies, in general, are not of major importance in protection against these infections. Specifically sensitized T lymphocytes produce lymphokines that activate macrophages. Activated macrophages are the major line of defense against systemic fungal pathogens. The type and degree of impairment in immune responses determines the susceptibility and severity of diseases. The type of immune response also determines the tissue reactions in these diseases and sometimes may be involved in the pathogenesis of the disease process. The role of natural killer cell activity, antibody-dependent cellular cytotoxicity, and biological response modifiers in various fungal infections has been described recently. The microbial factors of importance in fungal infections are adherence, invasion, presence of an antiphagocytic capsule, and ability to grow under altered physiological states of the host. The differences in the virulence of fungal strains is of minor importance in determining the outcome in general. The seriousness of the alteration of the host state rather than the pathogenic properties of the fungus determine the severity of the disease.


Fungal Infection Host Defense Natural Killer Cell Activity Fungicidal Activity Specific Immune Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hirschberg, H., Bergh, O. J., Thorsby, E. Antigenpresenting properties of human vascular endothelial cells. Journal of Experimental Medicine 1980, 152: 249s-255s.Google Scholar
  2. 2.
    Stingl, G., Katz, S. I., Clement, L., Green, I., Shevach, E. M. Immunologic functions of la-bearing epidermal Langerhans cells. Journal Immunology 1978, 121: 2005–2013.Google Scholar
  3. 3.
    Bodey, G. P. Fungal infections complicating acute leukemia. Journal of Chronic Diseases 1966, 19: 667–687.Google Scholar
  4. 4.
    Edwards, J. E., Drutz, D. J., Bennett, J. E., Remington, J. S. Disseminated candidiasis: a major problem in cancer and postoperative patients. Academy Professional Publications, New York, 1986, p. 4–14.Google Scholar
  5. 5.
    Agha, F. P., Lee, H. H., Nostrant, T. T. Herpetic esophagitis: a diagnostic challenge in immunocompromised patients. American Journal of Gastroenterology 1986, 81: 246–253.Google Scholar
  6. 6.
    Knight, L., Fletcher, J. Growth ofCandida albicans in saliva: stimulation of growth associated with antibiotic, corticosteroids, and diabetes mellitus. Journal of Infectious Diseases 1971, 123: 371–377.Google Scholar
  7. 7.
    Tapper-Jones, L. M., Aldred, M. J., Walker, D. M., Hayes, T. M. Candidal infections and populations ofCandida albicans in mouths of diabetics. Journal of Clinical Pathology 1981, 34: 706–711.Google Scholar
  8. 8.
    Walsh, H., Hildebrandt, R. J., Prystowsky, H. Oral progestational agents as a cause of candida vaginitis. American Journal of Obstetrics and Gynecology 1968, 101: 991–993.Google Scholar
  9. 9.
    Jackson, J. L., Spain, W. T. Comparative study of combined and sequential antivulatory therapy on vaginal moniliasis. American Journal of Obstetries and Gynecology 1968, 101: 1134–1135.Google Scholar
  10. 10.
    Kimura, L. H., Pearsall, N. N. Adherence ofCandida albicans to human buccal epithelial cells. Infection and Immunity 1978, 21: 64–68.Google Scholar
  11. 11.
    Schuit, K. E. Phagocytosis and intracellular killing of pathogenic yeasts by human monocytes and neutrophils. Infection and Immunity 1979, 24: 932–939.Google Scholar
  12. 12.
    Cohen, M. S., Isturiz, R. E., Malech, H. L., Root, R. K., Wilzert, C. M., Gutman, L., Buckley, R. H. Fungal infection in chronic granulomatous disease. The importance of the phagocyte in defense against fungi. American Journal of Medicine 1981, 71: 59–66.Google Scholar
  13. 13.
    Diamond, R. D., Krzesicki, R. Mechanisms of attachment of neutrophils toCandida albicans pseudohyphae in the absence of serum, and of subsequent damage to pseudohyphae by microbicidal processes of neutrophils in vitro. Journal of Clinical Investigation 1978, 61: 360–369.Google Scholar
  14. 14.
    Kagaya, K., Shinoda, T., Fukazawa, Y. Murine defense mechanism againstCandida albicans infection. I: Collaboration of cell-mediated and humoral immunities in protection against systemicCandida albicans infection. Microbiology and Immunology 1981, 25: 647–656.Google Scholar
  15. 15.
    Gelfand, J. A., Hurley, D. L., Fauci, A. S., Frank, M. M. Role of complement in host defense against experimental disseminated candidiasis. Journal of Infectious Diseases 1978, 138: 9–16.Google Scholar
  16. 16.
    Cutler, J. E. Acute systemic candidiasis in normal and congenitally thymic-deficient (nude) mice. Journal of Reticuloendothelial Society 1976, 19: 121–124.Google Scholar
  17. 17.
    Washington, J. A. Bacteria, fungi and parasites. In: Mandell, G. L., Douglas, R. G., Bennett, J. E.: Principles and practice of infectious diseases. John Wiley, New York, 1985, p. 109–138.Google Scholar
  18. 18.
    McCarty, J., Flam, M., Pullen, G., Jones, R., Kassel, S. Outbreak of primary cutaneous aspergillosis related to intravenous arm boards. Journal of Pediatrics 1985, 108: 721–724.Google Scholar
  19. 19.
    Babior, B. M. Oxygen dependent killing by phagocytes. New England Journal of Medicine 1978, 298: 659–668; 721–725.Google Scholar
  20. 20.
    Diamond, R. D., Krzesicki, R., Epstein, B., Jao, W. Damage to hyphal forms of fungi by human leukocytes in vitro. American Journal of Pathology 1978, 91: 313–328.Google Scholar
  21. 21.
    Sideransky, H., Friedman, L. The effects of cortisone and antibiotic agents on experimental pulmonary aspergillosis. American Journal of Pathology 1959, 35: 169–179.Google Scholar
  22. 22.
    Sideransky, H., Verney, E., Beede, H. Experimental pulmonary aspergillosis. Archives of Pathology 1965, 79: 299–309.Google Scholar
  23. 23.
    White, L. O. Germination ofAspergillus fumigatus conidia in the lung of normal and cortisone-treated mice. Sabouraudia 1977, 15: 37–41.Google Scholar
  24. 24.
    Merkow, L. L., Epstein, S. M., Sideransky, H., Verney, E., Pardo, M. The pathogenesis of experimental pulmonary aspergillosis. American Journal of Pathology 1970, 62: 57–66.Google Scholar
  25. 25.
    Schaffner, A., Douglas, H., Braude, A. Selective protection against conidia by mononuclear and against mycelia by polymorphonuclear phagocytes in resistance toAspergillus. Journal of Clinical Investigation 1982, 69: 617–631.Google Scholar
  26. 26.
    Fauci, A. S., Dale, D. C. The effect of in vivo hydrocortisone on subpopulations of human lymphocytes. Journal of Clinical Investigation 1974, 53: 240–246.Google Scholar
  27. 27.
    Tauber, A. I., Borregaard, N., Simons, E., Wright, J. Chronic granulomatous disease: a syndrome of phagocyte oxidase deficiencies. Medicine 1983, 62: 286–309.Google Scholar
  28. 28.
    Weening, R. S., Roos, D., Weemaes, C. M. R., Homan-Mueller, J. W. T., van Schaik, M. L. J. Defective initiation of the metabolic stimulation in phagocytizing granulocytes: a new congenital defect. Journal of Laboratory Clinical Medicine 1976, 88: 757–768.Google Scholar
  29. 29.
    Harvath, L., Andersen, B. R. Defective initiation of oxidative metabolism in polymorphonuclear leukocytes. New England Journal of Medicine 1979, 300: 1130–1135.Google Scholar
  30. 30.
    Chusid, M. J., Sohnle, P. G., Fink, J. N., Shea, M. L. A genetic defect of granulocyte oxidative metabolism in a man with disseminated aspergillosis. Journal of Laboratory Clinical Medicine 1981, 97: 730–738.Google Scholar
  31. 31.
    Pagani, A., Spalla, R., Ferrari, F. A., Duse, M., Lenzi, L., Bretz, U., Baggiolini, M., Siccardi, A. G. DefectiveAspergillus killing by neutrophil leucocytes in a case of systemic aspergillosis. Clinical Experimental Immunology 1981, 43: 201–207.Google Scholar
  32. 32.
    Fietta, A., Sacchi, F., Mangiarotti, G., Manara, G., Grassi, G. Defective phagocyte aspergillus killing associated with recurrent pulmonary aspergillus infections. Infection 1984, 12: 10–13.Google Scholar
  33. 33.
    Karam, G. H., Griffin, F. M. Invasive pulmonary aspergillosis to nonimmunocompromised, non-neutropenic host. Reviews of Infectious Diseases 1986, 8: 357–363.Google Scholar
  34. 34.
    Lewis, M., Kallenbach, J., Ruff, P., Zaltzman, M., Abramowitz, J., Zwi, S. Invasive pulmonary aspergillosis complicating influenza A pneumonia in a previously healthy patient. Chest 1985, 87: 691–693.Google Scholar
  35. 35.
    Friend, P. A. Pulmonary infection in cystic fibrosis. Journal of Infection 1986, 13: 55–72.Google Scholar
  36. 36.
    Guidotti, T. L., Luetzler, J., Agnese, P. A., Escaro, D. U. Fatal disseminated aspergillosis in a previously well young adult with cystic fibrosis. American Journal of Medical Sciences 1982, 283: 157–160.Google Scholar
  37. 37.
    Haupt, H. M., Hutchins, G. M., Moore, G. W. ARA-C lung: noncardiogenic pulmonary edema complicating cytosine arabinoside therapy of leukemia. American Journal of Medicine 1981, 70: 256–261.Google Scholar
  38. 38.
    Robertson, M. J., Larson, R. A. Recurrent fungal pneumonias in patients with acute nonlymphocytic leukemia undergoing multiple courses of intensive chemotherapy. American Journal of Medicine 1988, 84: 233–239.Google Scholar
  39. 39.
    Wingard, J. R., Beals, S. U., Santos, G. W., Merz, W. G., Saral, R. Aspergillus infections in bone marrow transplant recipients. Bone Marrow Transplantation 1987, 2: 175–181.Google Scholar
  40. 40.
    Bach, M. C., Adler, J. L., Breman, J., Peng, F., Sahyoun, A., Schlesinger, R. M., Madras, P., Monaco, A. P.: Influence of rejection therapy on fungal and nocardial infections in renal transplant recipients. Lancet 1973, p. 180.Google Scholar
  41. 41.
    Weiland, D., Ferguson, R. M., Peterson, P. K., Snover, D. C., Simmons, R. L., Najarian, J. S. Aspergillosis in 25 renal transplant patients. Annals of Surgery 1983, 198: 622–629.Google Scholar
  42. 42.
    Gustafson, T. L., Schaffner, W., Lavely, G. B., Stratton, C. W., Johnson, H. K., Hutcheson, R. H. Invasive aspergillosis in renal transplant recipients: correlation with corticosteroid therapy. Journal of Infectious Diseases 1983, 148: 230–238.Google Scholar
  43. 43.
    Gentry, L. O., Zeluff, B. J. Diagnosis and treatment of infection in cardiac transplant patients. Surgical Clinics of North America 1986, 66: 459–465.Google Scholar
  44. 44.
    Wajszezuk, C. P., Dummer, J. S., Ho, M., Thiel, D. H. V., Starzl, T. E., Iwatsuki, S., Shaw, B. Fungal infections in liver transplant recipients. Transplantation 1985, 40: 347–353.Google Scholar
  45. 45.
    Kusne, S., Dummer, J. S., Singh, N., Iwatsuki, S., Makowka, L., Esquivel, C., Tzakis, A. G., Starzl, T. E., Ho, M. Infection after liver transplantation: an analysis of 101 consecutive cases. Medicine 1987, 67: 132–143.Google Scholar
  46. 46.
    Walsh, T. J., Hamilton, S. R. Disseminated aspergillosis complicating hepatic failure. Archives of Internal Medicine 1983, 143: 1189–1191.Google Scholar
  47. 47.
    Pillay, V. K. G., Wilson, D. M., Ing, T. S., Kark, R. M. Fungus infection in steroid-treated systemic lupus erythematosus. Journal of the American Medical Association 1968, 205: 63–67.Google Scholar
  48. 48.
    Wright, S. H., Czaja, A. J., Katz, R. S., Soloway, R. D. Systemic mycosis complicating high dose corticosteroid treatment of chronic active liver disease. American Journal of Gastroenterology 1980, 74: 428–432.Google Scholar
  49. 49.
    Erlichman, M. C., Trieger, N. Aspergillus infection in a patient receiving immunosuppressive drugs. Journal of Oral Surgery 1978, 36: 978–981.Google Scholar
  50. 50.
    Kwon-Chung, K. J., Bennett, J. E. Epidemiologic differences between the two varieties ofCryptococcus neoformans. American Journal of Epidemiology 1984, 120: 123–130.Google Scholar
  51. 51.
    Gluck, J. L., Myers, J. P., Pass, L. M. Cryptococcemia due toCryptococcus albidus. Southern Medical Journal 1987, 80: 511–513.Google Scholar
  52. 52.
    Kozel, T. R., Pfrommer, G. S. T., Redelman, D. Activated neutrophils exhibit enhanced phagocytosis ofCryptococcus neoformans opsonized with normal human serum. Clinical Experimental Immunology 1987, 70: 238–246.Google Scholar
  53. 53.
    Diamond, R. D., Allison, A. C. Nature of the effector cells responsible for antibody-dependent cell-mediated killing ofCryptococcus neoformans. Infection and Immunity 1976, 14: 716–720.Google Scholar
  54. 54.
    Miller, G. P. G., Kohl, S. Antibody-dependent leukocyte killing ofCryptococcus neoformans. Journal of Immunology 1983, 131: 1455–1459.Google Scholar
  55. 55.
    Diamond, R. D., Bennett, J. E. Prognostic factors in cryptococcal meningitis. Annals of Internal Medicine 1974, 80: 176–181.Google Scholar
  56. 56.
    Cauley, L. K., Murphy, J. W. Response of congenitally athymic (nude) and phenotypically normal mice toCryptococcus neoformans infection. Infection and Immunity 1979, 23: 644–651.Google Scholar
  57. 57.
    Lim, T. S., Murphy, J. W. Transfer of immunity to cryptococcosis by T-enriched splenic lymphocytes fromCryptococcus neoformans-sensitized mice. Infection and Immunity 1980, 30: 5–11.Google Scholar
  58. 58.
    Fung, P. Y. S., Murphy, J. W. In vitro interactions of immune lymphocytes andCryptococcus neoformans. Infection and Immunity 1982, 36: 1128–1138.Google Scholar
  59. 59.
    Murphy, J. W., Mosley, R. L., Moorhead Regulation of cell-mediated immunity in cryptococcosis. II: Characterization of first order T suppressor cells (TS1) and induction of second order suppressor cells. Journal of Immunology 1983, 130: 2876–2881.Google Scholar
  60. 60.
    Nabavi, N., Murphy, J. W. Antibody-dependent natural killer cell-mediated growth inhibition. Infection and Immunity 1986, 51: 556–562.Google Scholar
  61. 61.
    Hidore, M. R., Murphy, J. W. Correlation of natural killer cell activity and clearance ofCryptococcus neoformans from mice after adoptive transfer of splenic nylon wool-nonadherent cells. Infection and Immunity 1986, 51: 547–555.Google Scholar
  62. 62.
    Blackstock, R., Hernandez, N. C. Inhibition of macrophage phagocytosis in cryptococcosis: phenotypic analysis of the suppressor cell. Cellular Immunology 1988, 114: 174–187.Google Scholar
  63. 63.
    Miller, G. P., Lewis, E. In vitro effect of cyclosporine on interleukin-2 receptor expression stimulated byCryptococcus neoformans. Journal of Infectious Diseases 1987, 155: 799–802.Google Scholar
  64. 64.
    Reed, J. C., Abidi, A. H., Alpers, J. D., Hoover, R. G., Robb, R. J., Nowell, P. C. Effect of cyclosporin A and dexamethasone on interleukin 2 receptor gene expression. Journal of Immunology 1986, 137: 150–154.Google Scholar
  65. 65.
    Miller, G. P. G., Puck, J. In vitro human lymphocyte responses toCryptococcus neoformans. Evidence for primary and secondary responses in normals and infected subjects. Journal of Immunology 1984, 133: 166–172.Google Scholar
  66. 66.
    Graybill, J. R., Taylor, R. L. Host defense in cryptococcosis. International Archives of Allergy and Applied Immunity 1978, 57: 101–113.Google Scholar
  67. 67.
    Schimpff, S. C., Bennett, J. E. Abnormalities in cell-mediated immunity in patients withCryptococcus neoformans infection. Journal of Allergy and Clinical Immunology 1975, 55: 430–441.Google Scholar
  68. 68.
    Bodey, G. P. Fungal infection and fever of unknown origin in neutropenic patients. American Journal of Medicine 1986, 80: 112–119.Google Scholar
  69. 69.
    Editoral: Cryptococcosis and AIDS. Lancet 1988, i: 1434–1436.Google Scholar
  70. 70.
    Hooper, D. C., Pruitt, A. A., Rubin, R. H. Central nervous system infection in the chronically immunosuppressed. Medicine 1982, 61: 166–168.Google Scholar
  71. 71.
    Conti, D. J., Rubin, R. H. Infection of the central nervous system in organ transplant recipients. Neurologic Clinics 1988, 6: 241–260.Google Scholar
  72. 72.
    Stafford, C. R., Fisher, J. F., Fadel, H. E., Espingel-Ingroff, A. V., Shadomy, S., Hamby, M. Cryptococcal meningitis in pregnancy. Obstetrics and Gynecology 1983, 62: 35–37.Google Scholar
  73. 73.
    Poblete, R. B., Kirby, B. D. Cryptococcal peritonitis: report of a case and review of the literature. American Journal of Medicine 1987, 82: 665–667.Google Scholar
  74. 74.
    Smith, J. W., Arnold, W. C. Cryptococcal peritonitis in patients on peritoneal dialysis. American Journal of Kidney Diseases 1988, 11: 430–433.Google Scholar
  75. 75.
    Diamond, R. D., Krzesicki, R., Epstein, B., Jao, W. Damage to hyphal forms of fungi by human leukocytes in vitro: a possible host defense mechanism in aspergillosis and mucormycosis. American Journal of Pathology 1978, 91: 313–328.Google Scholar
  76. 76.
    Bauer, H., Flanagan, J. F., Sheldon, W. H. Experimental cerebral mucormycosis in rabbits with alloxan diabetes. Yale Journal of Biology and Medicine 1955, 28: 29–36.Google Scholar
  77. 77.
    Sheldon, W. H., Bauer, H. Activation of quiescent mucormycotic granulomata in rabbits by induction of acute alloxan diabetes. Journal of Experimental Medicine 1958, 108: 171–178.Google Scholar
  78. 78.
    Perillie, P. E., Nolan, J. P., Finch, S. C. Studies of the resistance to infection in diabetes mellitus: local exudative cellular response. Journal of Laboratory Clinical Medicine 1962, 59: 1008–1015.Google Scholar
  79. 79.
    Bauer, H., Sheldon, W. H. Leukopenia with granulocytopenia in experimental mucormycosis (Rhizopus oryzae infection). Journal of Experimental Medicine 1957, 106: 501–508.Google Scholar
  80. 80.
    Diamond, R. D., Haudenschild, C. C., Erickson, N. F., III. Monocyte-mediated damage toRhizopus oryzae hyphae in vitro. Infection and Immunity 1982, 38: 292–297.Google Scholar
  81. 81.
    Diamond, R. D., Clark, R. A. Damage toAspergillus fumigatus andRhizopus oryzae hyphae by oxidative and nonoxidative microbicidal products of human neutrophils in vitro. Infection and Immunity 1982, 38: 487–495.Google Scholar
  82. 82.
    Odeberg, H., Olsson, I. Microbicidial mechanisms of human granulocytes: synergistic effects of granulocyte elastase and myeloperoxidase or chymotrypsin-like cationic proteins. Infection and Immunity 1976, 14: 1276–1283.Google Scholar
  83. 83.
    Gale, G. R., Welch, A. M. Studies of opportunistic fungi: I: Inhibition ofRhizopus oryzae by human serum. American Journal of Medical Sciences 1961, 241: 604–612.Google Scholar
  84. 84.
    Poili, V. C. H., Diekmann, Z. K., Ettlinger, L. Über das Vorkommen von ketonreduktasen bei Mikroorganismen. Pathological Microbiology 1965, 28: 93–98.Google Scholar
  85. 85.
    Artis, W. M., Patrusky, E., Rastinejad, F., Duncan, R. L. Fungistatic mechanism of human transferrin forRhizopus oryzae andTrichophyton mentagrophytes: alternative to simple iron deprivation. Infection and Immunity 1983, 41: 1269–1278.Google Scholar
  86. 86.
    Waldorf, A. R., Levitz, S. M., Diamond, R. D. In vivo bronchoalveolar macrophage defense againstRhizopus oryzae andAspergillus fumigatus. Journal of Infectious Diseases 1984, 150: 752–760.Google Scholar
  87. 87.
    Simon, R., Hoffman, G. G., Harding, H. B. Phycomycosis. Aerospace Medicine 1964, 35: 668–675.Google Scholar
  88. 88.
    Meyer, R. D., Rosen, P., Armstrong, D. Phycomycosis complicating leukemia and lymphoma. Annals of Internal Medicine 1972, 77: 871–879.Google Scholar
  89. 89.
    Meyer, R. D., Armstrong, D. Mucormycosis-changing status. Critical Reviews in Clinical Laboratory Sciences 1973, 4: 421–451.Google Scholar
  90. 90.
    Record, N. B., Ginder, D. R. Pulmonary phycomycosis without obvious predisposing factors. Journal of the American Medical Association 1976, 235: 1256–1257.Google Scholar
  91. 91.
    Lawson, H. H., Schmaman, A. Gastric phycomycosis. Brown Journal of Surgery 1974, 61: 743–746.Google Scholar
  92. 92.
    Baker, R. D., Seabury, J. H., Schneidau, J. D. Subcutaneous and cutaneous mucormycosis and subcutaneous phycomycosis. Laboratory Investigation 1962, 11: 1091–1102.Google Scholar
  93. 93.
    Khica, G. J., Berroya, R. B., Escana, F. B., Lee, C. S. Mucormycosis in a mitral prosthesis. Journal of Thoracic and Cardiovascular Surgery 1972, 63: 903–905.Google Scholar
  94. 94.
    Echols, R. M., Selinger, D. S., Hallowell, C., Goodwin, J. S., Duncan, M. H., Cushing, A. H. Rhizopus osteomyelitis: a case report and review. American Journal of Medicine 1979, 66: 141–145.Google Scholar
  95. 95.
    McNulty, J. S. Rhinocerebral mucormycosis: predisposing factors. Laryngoscopy 1982, 92: 1140–1143.Google Scholar
  96. 96.
    Goodill, J. J., Abuelo, J. G. Mucormycosis — a new risk of deferoxamine therapy in dialysis patients with aluminium or iron overload. New England Journal of Medicine 1987, 317: 54.Google Scholar
  97. 97.
    Butka, B. J., Bennett, S. R., Johnson, C. Disseminated inoculation blastomycosis in a renal transplant recipient. American Review of Respiratory Diseases 1984, 130: 1180–1183.Google Scholar
  98. 98.
    McDaniel, L. S., Cozad, G. C. Immunomodulation byBlastomyces dermatitidis: functional activity of murine peritoneal macrophages. Infection and Immunity 1983, 40: 733–740.Google Scholar
  99. 99.
    Thurmond, L. M., Mitchell, T. G. Blastomyces dermatitidis chemotactic factor: kinetics of production and biological characterization evaluated by a modified neutrophil chemotaxis assay. Infection and Immunity 1984, 46: 87–93.Google Scholar
  100. 100.
    Brummer, E., Morrison, C. J., Stevens, D. A. Recombinant and natural gamma-interferon activation of macrophages in vitro: different dose requirements for induction of killing activity against phagocytizable and nonphagocytizable fungi. Infection and Immunity 1985, 49: 724–730.Google Scholar
  101. 101.
    Brummer, E., Stevens, D. A. Fungicidal mechanisms of activated macrophages: evidence for nonoxidative mechanisms for killing ofBlastomyces dermatitidis. Infection and Immunity 1987, 55: 3221–3224.Google Scholar
  102. 102.
    Brummer, E., Stevens, D. A. Activation of pulmonary macrophages for fungicidal activity by gamma-interferon or lymphokines. Clinical and Experimental Immunology 1987, 70: 520–528.Google Scholar
  103. 103.
    Brummer, E., Stevens, D. A. Activation of murine polymorphonuclear neutrophils for fungicidal activity with supernatants from antigen-stimulated immune spleen cell cultures. Infection and Immunity 1984, 45: 447–452.Google Scholar
  104. 104.
    Brummer, E., Sugar, A. M., Stevens, D. A. Enhanced oxidative burst in immunologically activated but not elicited polymorphonuclear leukocytes correlates with fungicidal activity. Infection and Immunity 1985, 49: 396–401.Google Scholar
  105. 105.
    Morrison, C. J., Brummer, E., Isenberg, R. A., Stevens, D. A. Activation of murine polymorphonuclear neutrophils for fungicidal activity by recombinant gamma interferon. Journal of Leukocyte Biology 1987, 41: 434–440.Google Scholar
  106. 106.
    Bradsher, R. W., Ulmer, W. C. LiveBlastomyces dermatitidis yeast-induced responses of immune and non-immune human mononuclear cells. Mycopathologia 1984, 87: 159–166.Google Scholar
  107. 107.
    Drutz, D. J., Frey, C. L. Intracellular and extracellular defenses of human phagocytes againstBlastomyces dermatitidis conidia and yeasts. Journal of Laboratory and Clinical Medicine 1985, 105: 737–750.Google Scholar
  108. 108.
    Powell, B. L., Drutz, D. J., Huppert, M., Sun, S. H. Relationship of progesterone and estradiol-binding protein inCoccidioides immitis dissemination in pregnancy. Infection and Immunity 1983, 40: 478–485.Google Scholar
  109. 109.
    Drutz, D. J., Huppert, M. Coccidioidomycosis: factors affecting the host-parasite interaction. Journal of Infectious Diseases 1983, 147: 372–390.Google Scholar
  110. 110.
    Beaman, L., Holmberg, C. A. In vitro response of alveolar macrophages to infection withCoccidioides immitis. Infection and Immunity 1980, 28: 594–600.Google Scholar
  111. 111.
    Beaman, L., Holmberg, C. A. Interaction of non-human primate peripheral blood leukocytes andCoccidioides immitis in vitro. Infection and Immunity 1980, 29: 1200–1201.Google Scholar
  112. 112.
    Segal, G. P., Lehrer, R. I., Selsted, M. E. In vitro effect of phagocyte cationic peptides onCoccidioides immitis. Journal of Infectious Diseases 1985, 151: 890–894.Google Scholar
  113. 113.
    Cox, R. A., Pope, R. M. Serum-mediated suppression of lymphocyte transformation responses in coccidioidomycosis. Infection and Immunity 1987, 55: 1058–1062.Google Scholar
  114. 114.
    Petkus, A. F., Baum, L. L. Natural killer cell inhibition of young spherules and endospores ofCoccidioides immitis. Journal of Immunology 1987, 139: 3107–3111.Google Scholar
  115. 115.
    Cox, R. A., Kennell, W., Boncyk, L., Murphy, J. W. Induction and expression of cell-mediated immune responses in inbred mice infected withCoccidioides immitis. Infection and Immunity 1988, 56: 13–17.Google Scholar
  116. 116.
    Cox, R. A., Kennell, W. Suppression of T-lymphocyte response byCoccidioides immitis antigen. Infection and Immunity 1988, 56: 1424–1429.Google Scholar
  117. 117.
    Kirkland, T. N., Fierer, J. Genetic control of resistance toCoccidioides immitis: a single gene that is expressed in spleen cells determines resistance. Journal of Immunology 1985, 135: 548–552.Google Scholar
  118. 118.
    Sievers, M. L. Disseminated coccidioidomycosis among southwestern American Indians. American Review of Respiratory Diseases 1974, 109: 601–612.Google Scholar
  119. 119.
    Bronnimann, D. A., Adam, R. D., Galgiani, J. N., Habib, M., Petersen, E. A., Porter, B., Bloom, J. W. Coccidioidomycosis in the acquired immunodeficiency syndrome. Annals of Internal Medicine 1987, 106: 372–379.Google Scholar
  120. 120.
    Pappagianis, D. Epidemiology of coccidioidomycosis. In: Stevens, D. A. (ed.): Coccidioidomycosis: a text. Plenum, New York, 1980, p. 64–85.Google Scholar
  121. 121.
    Howard, D. H., Otto, V. Experiments on lymphocyte-mediated cellular immunity in murine histoplasmosis. Infection and Immunity 1977, 16: 226–231.Google Scholar
  122. 122.
    Williams, D. M., Graybill, J. R., Drutz, D. J. Histoplasma capsulatum infection in nude mice. Infection and Immunity 1978, 21: 973–977.Google Scholar
  123. 123.
    Cozad, G. C., Lindsey, T. J. Effect of cyclophosphamide onHistoplasma capsulatum infection in mice. Infection and Immunity 1974, 9: 261–265.Google Scholar
  124. 124.
    Khardori, N., Chaudhary, S., McConnachie, P., Tewari, R. P. Characterization of lymphocytes responsible for protective immunity to histoplasmosis in mice. Mykosen 1983, 26: 523–532.Google Scholar
  125. 125.
    Tewari, R. P., Khardori, N., McConnachie, P., Von Behren, L. A., Yamada, T. Blastogenic responses of lymphocytes from mice immunized by sublethal infection with yeast cells ofHistoplasma capsulatum. Infection and Immunity 1982, 36: 1013–1018.Google Scholar
  126. 126.
    Holland, P. Circulating human phagocytes andHistoplasma capsulatum. In: Histoplasmosis. Ajello, L., Chick, E. W., Furcolow, M. L. (ed.): Charles C. Thomas, Springfield, 1971, p. 380–410.Google Scholar
  127. 127.
    Dumont, A., Robert, A. Electron microscopic study of phagocytosis ofHistoplasma capsulatum by hamster peritoneal macrophages. Laboratory Investigation 1970, 23: 278.Google Scholar
  128. 128.
    De Sanchez, S. B., Carbonell, L. M. Immunological studies onHistoplasma capsulatum. Infection and Immunity 1975, 11: 387–393.Google Scholar
  129. 129.
    Von Behren, L. A., Chaudhary, S., Khardori, N., Rabinovich, S., Shu, M., Tewari, R. P. Effect of silica on the susceptibility of mice to experimental histoplasmosis. Journal of the Reticuloendothelial Society 1983, 34: 99–111.Google Scholar
  130. 130.
    Artz, R. P., Bullock, W. E. Immunoregulatory responses in experimental disseminated histoplasmosis: depression of T-cell dependent and T-effector responses by activation of splenic suppressor cells. Infection and Immunity 1979, 23: 893–902.Google Scholar
  131. 131.
    Newberry, W. M., Chandler, J. W., Chin, T. D. Y., Kirkpatrick, C. H. Immunology of the mycoses. I: Depressed lymphocyte transformation in chronic histoplasmosis. Journal of Immunology 1968, 100: 436–443.Google Scholar
  132. 132.
    Alford, R. H., Goodwin, R. A. Patterns of immune response in chronic pulmonary histoplasmosis. Journal of Infectious Diseases 1972, 125: 269–274.Google Scholar
  133. 133.
    Wheat, L. J., Slama, T. G., Norton, J. A., Kohler, R. B., Eitzen, H. E., French, M. L. V., Sathapatayavongs, B. Risk factors for disseminated or fatal histoplasmosis: analysis of a large urban outbreak. Annals of Internal Medicine 1982, 96: 159–163.Google Scholar
  134. 134.
    Tompsett, R., Portera, L. A. Histoplasmosis: twenty years experience in a general hospital. Transactions of the American Clinical and Climatological Association 1975, 87: 214–223.Google Scholar
  135. 135.
    Gardner, I. D. The effect of aging on susceptibility to infection. Reviews of Infectious Diseases 1980, 2: 801–810.Google Scholar
  136. 136.
    Davies, S. F., Sarosi, G. A., Peterson, P. K., Kahn, M., Howard, R. J., Simmons, R. L., Najarian, I. S. Disseminated histoplasmosis in renal transplant recipients. American Journal of Surgery 1979, 137: 686–691.Google Scholar
  137. 137.
    Wheat, L. J., Smith, E. J., Sathapatayavongs, B., Batteiger, B., Filo, R. S., Leapman, S. B., French, M. V. Histoplasmosis in renal allograft recipients: two large urban outbreaks. Archives of Internal Medicine 1983, 143: 703–707.Google Scholar
  138. 138.
    Walsh, T. J., Catchatourian, R., Cohen, H. Disseminated histoplasmosis complicating bone marrow transplantation. American Journal of Clinical Pathologists 1983, 79: 509–511.Google Scholar
  139. 139.
    Stobo, J. D., VanScoy, P. S., Hermans, P. E. Suppressor thymus-derived lymphocytes in fungal infection. Journal of Clinical Investigation 1976, 57: 319–328.Google Scholar
  140. 140.
    Payan, D. G., Wheat, L. J., Brahmi, Z., Ip, S., Hansen, W. P., Hoffman, R. A., Healey, K., Rubin, R. H. Changes in immunoregulatory lymphocyte populations in patients with histoplasmosis. Journal of Clinical Immunology 1984, 4: 98–107.Google Scholar
  141. 141.
    Lehmann, P. F., Gibbons, J., Senitzer, D., Ribner, B. S., Freimer, E. H. T lymphocyte abnormalities in disseminated histoplasmosis. American Journal of Medicine 1983, 75: 790–794.Google Scholar
  142. 142.
    Johnson, P. C., Khardori, N., Najjar, A. F., Butt, F., Mansell, P. W. A., Sarosi, G. A. Progressive disseminated histoplasmosis in patients with acquired immunodeficiency syndrome. American Journal of Medicine 1988, 85: 152–158.Google Scholar
  143. 143.
    Goodwin, R. A., Shapiro, J. L., Thurman, G. H., Thurman, S. S., Des Prez, R. M. Disseminated histoplasmosis: clinical and pathologic correlations. Medicine 1980, 59: 1–33.Google Scholar

Copyright information

© Priedr. Vieweg & Sohn Verlagsgesellschaft mbH 1989

Authors and Affiliations

  • N. Khardori
    • 1
  1. 1.Section of Infectious DiseasesDepartment of Medical Specialities, University of Texas M. D. Anderson Cancer CenterHoustonUSA

Personalised recommendations