Advertisement

Pharmaceutisch Weekblad

, Volume 7, Issue 1, pp 1–9 | Cite as

Halopemide, a new psychotropic agent

Cerebral distribution and receptor interactions
  • A. J. M. Loonen
  • W. Soudijn
Review Articles

Abstract

Halopemide is a new psychotropic agent, a structural analogue of the neuroleptics of the butyrophenone type but with different pharmacological and clinical properties. Preliminary clinical findings indicate that halopemide lacks the ability to induce parkinsonism and may be an effective drug in the treatment of psychosis characterized by autism, emotional withdrawal or apathy. Its pharmacological effects at a molecular level in comparison to structurally related neuroleptics and putative metabolites are reviewed.

Keywords

Public Health Internal Medicine Molecular Level Clinical Finding Pharmacological Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Soudijn W, Van Wijngaarden I, Janssen PAJ. US Patent no 4,031,226, 1977.Google Scholar
  2. 2.
    Rombaut N, Depoorter H, Brugmans J. Halopemide, a new potent non-neuroleptic dopamine-blocker with psychotropic properties. Communication at the XIth CINP Congress, Vienna (Austria), July 9–16, 1978.Google Scholar
  3. 3.
    Wauters A, Rombaut N. R 34 301 in the treatment of schizophrenia. An open pilot trial in 10 patients. Janssen Clinical Research Report R 34301/3. Beerse: Janssen Pharmaceutica, 1976.Google Scholar
  4. 4.
    Deberdt R. Anti-autistic properties of halopemide in the treatment of young oligophrenic patients with severe contact disturbances. A double-blind trial in 10 patients. Janssen Clinical Research Report R 34301/1. Beerse: Janssen Pharmaceutica, 1977.Google Scholar
  5. 5.
    Veltkamp BP. Halopemide in the treatment of infantile autism. A case study. Janssen Clinical Research Report R 34301/4. Beerse: Janssen Pharmaceutica, 1977.Google Scholar
  6. 6.
    Depoorter H, Martens C, Isebaert L, Glorieux H, Verstraeten L. Therapeutic effect of halopemide. A multicentric open pilot trial in 70 patients. Janssen Clinical Research Report R 34301/5. Beerse: Janssen Pharmaceutica, 1978.Google Scholar
  7. 7.
    Nolen WA, Jadnanansingh R. Halopemide, a new psychotropic drug. Clinical effects in an open study. Pharmacopsychiatria 1981;14:21–6.Google Scholar
  8. 8.
    Davis JM. Antipsychotic drugs. In: Kaplan HI, Freedman AM, Sadock BJ, eds. Comprehensive textbook of psychiatry, III. 3rd ed. Baltimore: Williams & Wilkins, 1980:2257–89.Google Scholar
  9. 9.
    Klein DF, Gittelman R, Quitkin F, Rifkin A. Diagnosis and drug treatment of psychiatric disorders: adults and children. 2nd ed. Baltimore: Williams & Wilkins, 1980.Google Scholar
  10. 10.
    Hollister LE. Psychiatric disorders. In: Avery GS, ed. Drug Treatment. 2nd ed. Sydney: Adis Press, 1980;1057–121.Google Scholar
  11. 11.
    Baldessarini RJ. Drugs and the treatment of psychiatric disorders. In: Gilman AG, Goodman LS, Gilman A, eds. Goodman and Gilman's The Pharmacological Basis of Therapeutics. 6th ed. New York: MacMillan Publishing Company, 1980:391–447.Google Scholar
  12. 12.
    Ayd FJ Jr. Early-onset neuroleptic-induced extrapyramidal reactions: a second survey, 1961–1981. In: Coyle JT, Enna SJ, eds. Neuroleptics: neurochemical, behavioral, and clinical perspectives. New York: Raven Press, 1983:75–92. (Enna SJ, ed. Central Nervous System Pharmacology. Vol. 3).Google Scholar
  13. 13.
    Baldessarini RJ, Tarsy D. Tardive dyskinesia. In: Lipton MA, DiMascio A, Killam KF, eds. Psychopharmacology: a generation of progress. New York: Raven Press, 1978:993–1004.Google Scholar
  14. 14.
    Jenner P, Marsden CD. Neuroleptics and tardive dyskinesia. In: Coyle JT, Enna SJ, eds. Neuroleptics: neurochemical, behavioral, and clinical perspectives. New York: Raven Press, 1983:223–53. (Enna SJ, ed. Central Nervous System Pharmacology. Vol. 3).Google Scholar
  15. 15.
    Sovner R, DiMascio A. Extrapyramidal syndromes and other neurological side effects of psychotropic drugs. In: Lipton MA, DiMascio A, Killam KF, eds. Psychopharmacology: a generation of progress. New York: Raven Press, 1978:1021–32.Google Scholar
  16. 16.
    Task force on late neurological effects of antipsychotic drugs. Tardive dyskinesia: Summary of a task force report of the American psychiatric association. Am J Psychiat 1980;137:1163–72.Google Scholar
  17. 17.
    Broekaert A. The neuroendocrine effects of halopemide. Janssen Clinical Research Report R 34301/2. Beerse: Janssen Pharmaceutica, 1977.Google Scholar
  18. 18.
    Loonen AJM. Halopemide, an antipsychotic agent and R 28935, an antihypertensive agent. Cerebral distribution and receptor interactions. Amsterdam: University of Amsterdam, 1980. 123 pp. Dissertation.Google Scholar
  19. 19.
    Loonen AJM. Receptorinteractiesin vivo enin vitro. De toetsing van een hypothese en het werkingsmechanisme van halopemide. Pharm Weekbl. 1981;116:1181–7.Google Scholar
  20. 20.
    Soudijn W. Over neuroleptica. Metabolisme en localisatie (hersenen) van haloperidol en pimozide. Leiden: State University of Leiden, 1969. IIIpp. Dissertation.Google Scholar
  21. 21.
    Soudijn W, Van Wijngaarden I. Localization of [3H]-pimozide in the rat brain in relation to its anti-amphetamine potency. J Pharm Pharmacol 1972;24:773–80.Google Scholar
  22. 22.
    Loonen AJM, Van Wijngaarden I, Janssen PAJ, Soudijn W. Regional localization of halopemide, a new psychotropic agent, in the rat brain. Eur J Pharmacol 1978;50:403–8.Google Scholar
  23. 23.
    Laduron PM, Janssen PFM, Leysen JE. Spiperone: a ligand of choice for neuroleptic receptors. 2. Regional distribution andin vivo displacement of neuroleptic drugs. Biochem Pharmacol 1978;27:317–21.Google Scholar
  24. 24.
    Naylor RJ, Olley JE. The distribution of haloperidol in rat brain. Br J Pharmacol 1969;36:208P-9P.Google Scholar
  25. 25.
    Burt DR, Creese I, Snyder SH. Properties of [3H]haloperidol and [3H]dopamine binding associated with dopamine receptors in calf brain membranes. Mol Pharmacol 1976;12:800–12.Google Scholar
  26. 26.
    Seeman P, Lee T, Chau-Wong M, Tedesco J, Wong K. Dopamine receptors in human and calf brains, using [3H]apomorphine and an antipsychotic drug. Proc Natl Acad Sci USA 1976;734354–8.Google Scholar
  27. 27.
    Seeman P. Brain dopamine receptors. Pharmacol Rev 1980;32:229–313.Google Scholar
  28. 28.
    Loonen AJM, Van Wijngaarden I, Janssen PAJ, Soudijn W. Regional distribution of halopemide, a new psychotropic agent, in the rat brain at different time intervals and after chronic administration. Life Sci 1979;24:609–14.Google Scholar
  29. 29.
    Janssen PAJ, Niemegeers CJE, Schellekens KHL. Is it possible to predict the clinical effects of neuroleptic drugs (major tranquillizers) from animal data? Part I. Neuroleptic activity spectra for rats. Arzneim Forsch 1965;15:104–17.Google Scholar
  30. 30.
    Janssen PAJ, Niemegeers CJE, Schellekens KHL. Is it possible to predict the clinical effects of neuroleptic drugs (major tranquillizers) from animal data? Part II. Neuroleptic activity spectra for dogs. Arzneim Forsch 1965;15:1196–206.Google Scholar
  31. 31.
    Janssen PAJ, Niemegeers CJE, Schellekens KHL. Is it possible to predict the clinical effects of neuroleptic drugs (major tranquillizers) from animal data? Part III. The subcutaneous and oral activity in rats and dogs of 56 neuroleptic drugs in the jumping box test. Arzneim Forsch 1966;16:339–46.Google Scholar
  32. 32.
    Janssen PAJ, Niemegeers CJE, Schellekens KHL, Lennaerts FM. Is it possible to predict the clinical effects of neuroleptic drugs (major tranquillizers) from animal data? Part IV. An improved experimental design for measuring the inhibitory effects of neuroleptic drugs on amphetamineor apomorphine-induced ‘chewing’ and ‘agitation’ in rats. Arzneim Forsch 1967;17:841–54.Google Scholar
  33. 33.
    Niemegeers CJE. Prediction of side effects. In: Fielding S, Lal H, eds. Neuroleptics. New York: Futura Publishing Company, 1974:98–129. (Fielding S, ed. Industrial Pharmacology. Vol. 1).Google Scholar
  34. 34.
    Janssen PAJ, Van Bever WFM. Butyrophenones and diphenylbutylamines. In: Usdin E, Forrest IS, eds. Psychotherapeutic drugs. Part II. Applications. New York: Marcel Dekker, 1977:869–921. (Usdin E, ed. Psychopharmacology Series. Vol. 2.)Google Scholar
  35. 35.
    Niemegeers CJE, Wauquier A, Lenaerts FM. The ‘in vivo’ pharmacology of R 34301 in mice, rats and dogs. Janssen Preclinical Research Report R 34301/2. Beerse: Janssen Pharmaceutica, 1975.Google Scholar
  36. 36.
    Moore KE, Kelly PH. Biochemical pharmacology of mesolimbic and mesocortical dopaminergic neurons. In: Lipton MA, DiMascio A, Killam KF eds. Psychopharmacology: a generation of progress. New York: Raven Press, 1978:221–34.Google Scholar
  37. 37.
    Laduron P. Homovanillic acid (HVA) determination in rat brain. Janssen Preclinical Research Report R 34301/5. Beerse: Janssen Pharmaceutica, 1975.Google Scholar
  38. 38.
    Wauquier A, Van den Broeck WAE. Preliminary study on the effects of halopemide as compared to haloperidol and pimozide on sleep-wake patterns in dogs. Janssen Preclinical Research Report R 34301/13. Beerse: Janssen Pharmaceutica, 1978.Google Scholar
  39. 39.
    Daniels H, Colpaert FC, Niemegeers CJE. Effects of halopemide (R34301) on maternal behavior in male rats. Janssen Preclinical Research Report R 34301/15. Beerse: Janssen Pharmaceutica, 1979.Google Scholar
  40. 40.
    Neale R, Fallon S, Gerhardt S, Liebman JM. Acute dyskinesias in monkeys elicited by halopemide, mezilamine and the antidyskinetic drugs, oxiperomide and tiapride. Psychopharmacol [Berlin] 1981;75:254–7.Google Scholar
  41. 41.
    Smythe GA. The role of serotonin and dopamine in hypothalamic-pituitary function. Clin Endocrinol 1977;7:325–41.Google Scholar
  42. 42.
    Denef C, Follebouckt JJ. Differential effects of dopamine antagonists on prolactin secretion from cultured rat pituitary cells. Life Sci 1978;23:431–6.Google Scholar
  43. 43.
    Creese I. Receptor interactions of neuroleptics. In: Coyle JT, Enna SJ, eds. Neuroleptics: neurochemical, behavioral, and clinical perspectives. New York: Raven Press, 1983;183–222. (Enna SJ, ed. Central nervous system pharmacology. Vol. 3.)Google Scholar
  44. 44.
    Worms P, Broekkamp CLE, Lloyd KG. Behavioral effects of neuroleptics. In: Coyle JT, Enna SJ, eds. Neuroleptics: neurochemical, behavioral, and clinical perspectives. New York: Raven Press, 1983:93–117. (Enna SJ, ed. Central nervous system pharmacology. Vol. 3).Google Scholar
  45. 45.
    Leysen JE, Gommeren W, Laduron PM. Spiperone: a ligand of choice for neuroleptic receptors. 1. Kinetics and characteristics ofin vitro binding. Biochem Pharmacol 1978;27:307–16.Google Scholar
  46. 46.
    Ornitz EM, Ritvo ER. The syndrome of autism: a critical review. Am J Psychiatry 1976;133:609–21.Google Scholar
  47. 47.
    Stahl SM. The human platelet. Arch Gen Psychiatry 1977;34:509–16.Google Scholar
  48. 48.
    Anonymous. Serotonin, platelets and autism. Br Med J 1978;1:1651–2.Google Scholar
  49. 49.
    Minderaa RB, Young JG, Cohen DG. Neurochemische aspecten van kinderlijk autisme. Tijdschr Psychiatrie 1983;25:406–21.Google Scholar
  50. 50.
    Hanley HG, Stahl SM, Freedman DX. Hyperserotonaemia and amine metabolites in autistic and retarded children. Arch Gen Psychiatry 1977;34:521–3.Google Scholar
  51. 51.
    Leysen JE. Receptors for neuroleptic drugs. Adv Hum Psychopharmacol 1983;4:325–56.Google Scholar
  52. 52.
    Loonen AJM, Soudijn W. Effects of halopemide, a new psychotropic agent, on the uptake of serotonin by blood platelets. Arch Int Pharmacodyn Ther 1979;237:267–74.Google Scholar
  53. 53.
    Loonen AJM, Soudijn W. Effects of halopemide on potassium-induced release of radiolabeled neurotransmitters from rat cerebrocortical slicesin vitro. Arch Int Pharmacodyn Ther 1980;247:43–58.Google Scholar
  54. 54.
    Iversen LL. Biochemical psychopharmacology of GABA. In: Lipton MA, DiMascio A, Killam KF, eds. Psychopharmacology: a generation of progress. New York: Raven Press, 1978:25–38.Google Scholar
  55. 55.
    Mao CC, Costa E. Biochemical pharmacology of GABA transmission. In: Lipton MA, DiMascio A, Killam KF, eds. Psychopharmacology: a generation of progress. New York: Raven Press, 1978:307–18.Google Scholar
  56. 56.
    Enna SJ, Bennet JP Jr, Burt DR, Creese I, Snyder SH. Stereospecificity of interaction of neuroleptic drugs with neurotransmitters and correlation with clinical potency. Nature 1976;263:338–41.Google Scholar
  57. 57.
    Fjalland B. Inhibition by neuroleptics of uptake of3H-GABA into rat brain synaptosomes. Acta Pharmacol Toxicol 1978;42:73–6.Google Scholar
  58. 58.
    Olsen RW, Ticku MK, Van Ness PC, Greenlee D. Effects of drugs on γ-aminobutyric acid receptors, uptake, release and synthesisin vitro. Brain Res 1978;139:277–94.Google Scholar
  59. 59.
    Lloyd KG, Drekster S. An analysis of3H-gammaaminobutyric acid (GABA) binding in the human brain. Brain Res 1979;163:77–87.Google Scholar
  60. 60.
    Dismukes K, Mulder AH. Effects of neuroleptics on release of3H-dopamine from slices of rat corpus striatum. Naunyn Schmiedebergs Arch Pharmacol 1977;297:23–9.Google Scholar
  61. 61.
    Johnston GAR. Neuropharmacology of amino acid inhibitory transmitters. Ann Rev Pharmacol Toxicol 1978;18:269–9.Google Scholar
  62. 62.
    Berger PA, Elliott GR, Barchas JD. Neuroregulators and schizophrenia. In: Lipton MA, DiMascio A, Killam KF, eds. Psychopharmacology: a generation of progress. New York: Raven Press, 1978:1071–82.Google Scholar
  63. 63.
    Enna SJ, Maggi A. Biochemical pharmacology of GABA-ergic agonists. Life Sci 1979;24:1727–38.Google Scholar
  64. 64.
    Matsui Y, Kamioka T. Potentiation of muscimolinduced hyperactivity by benzodiazepines. J Pharm Pharmacol 1979;31:427–8.Google Scholar
  65. 65.
    Tanner T. GABA-induced locomotor activity in the rat, after bilateral injection into the ventral tegmental area. Neuropharmacol 1979;18:441–6.Google Scholar
  66. 66.
    Carlsson A. Mechanism of action of neuroleptic drugs. In: Lipton MA, DiMascio A, Killam KF, eds. Psychopharmacology: a generation of progress. New York: Raven Press, 1978:1057–70.Google Scholar
  67. 67.
    Melville EM, Turnbull MJ, Wheeler H. Determination ofin vivo activity of putative GABA-like compounds. Br J Pharmacol 1979, 66:123P-4P.Google Scholar
  68. 68.
    Worms P, Lloyd KG. Influence of GABA-agonists and antagonists on neuroleptic induced catalepsy in rats. Life Sci 1978;23:475–8.Google Scholar
  69. 69.
    Loonen AJM, Soe-Agnie CJ, Soudijn W. Effects of halopemide on GABA receptor binding, uptake and release. Brain Res 1981;210:485–92.Google Scholar
  70. 70.
    Mohler H, Okada T. Properties of γ-aminobutyric acid receptor binding with (+)-[3H]-bicuculline methiodide in rat cerebellum. Mol Pharmacol 1978;14:256–65.Google Scholar
  71. 71.
    Christensen AV, Arnt J, Scheel-Kruger J. Decreased antistereotypic effects of neuroleptics after additional treatment with a benzodiazepine, a GABA agonist or an anticholinergic compound. Life Sci 1979;124:1395–402.Google Scholar
  72. 72.
    Loonen AJM, Soe-Agnie CJ, Soudijn W. Halopemide and benzodiazepine binding sites. Arch Int Pharmacodyn Ther 1982;258:51–9.Google Scholar
  73. 73.
    Costa E. The role of gamma-aminobutyric acid in the action of 1,4-benzodiazepines. Trends Pharmacol Sci 1979;1:41–4.Google Scholar
  74. 74.
    Braestrup C, Nielsen M. Anxiety. Lancet 1982;12:1030–4.Google Scholar
  75. 75.
    Martin IL. Actions and interactions of GABA. Trends Pharmacol Sci 1983;4:405–6.Google Scholar
  76. 16.
    Simmonds MA. Multiple GABA receptors and associated regulatory sites. Trends Neurosciences 1983;16:279–81.Google Scholar
  77. 77.
    Dingemanse J, Breimer DD. Benzodiazepine receptors. Pharmacy International 1984;5:33–6.Google Scholar
  78. 78.
    Braestrup C, Nielsen M, Honore T. Molecular interactions in the GABA/benzodiazepine receptor, chloride channel complex. High energy radiation inactivation studies. Clin Neuropharmacol 1984;7(suppl 1):562–3.Google Scholar
  79. 79.
    Karobath M. Interaction of benzodiazepine receptor agonists and inverse agonists with the GABA benzodiazepine receptor complex. Clin Neuropharmacol 1984;7(suppl 1):880–1.Google Scholar
  80. 80.
    Braestrup C, Squires RF. Pharmacological characterization of benzodiazepine receptors in the brain. Eur J Pharmacol 1978;48:263–70.Google Scholar
  81. 81.
    Mackerer CR, Kochman RL, Bierschenk BA, Bremner SS. The binding of [3H]diazepam to rat brain homogenates. J Pharmacol Exp Ther 1978;206:405–13.Google Scholar
  82. 82.
    Haefely W. Molecular aspects of benzodiazepine receptors and their ligands. Clin Neuropharmacol 1984;7 (suppl i):658–9.Google Scholar
  83. 83.
    Van Rooy HH, Waterman RL, Kraak JC. Dynamic cation-exchange systems for the separation of drugs derived from butyrophenone and diphenylpiperidine by high-performance liquid chromatography and applied in the determination of halopemide in plasma. J Chromatogr (Biomed Appl) 1979;164:177–85.Google Scholar

Copyright information

© Royal Dutch Association for Advancement of Pharmacy 1985

Authors and Affiliations

  • A. J. M. Loonen
    • 1
  • W. Soudijn
    • 2
  1. 1.Psychiatric Hospital VoorburgGB VughtThe Netherlands
  2. 2.Department of Pharmaceutical ChemistryUniversity of AmsterdamTV AmsterdamThe Netherlands

Personalised recommendations