Communications in Mathematical Physics

, Volume 82, Issue 4, pp 545–606 | Cite as

Proof of confinement of static quarks in 3-dimensionalU(1) lattice gauge theory for all values of the coupling constant

  • Markus Göpfert
  • Gerhard Mack
Article

Abstract

We study the 3-dimensional pureU(1) lattice gauge theory with Villain action which is related to the 3-dimensional ℤ-ferromagnet by an exact duality transformation (and also to a Coulomb system). We show that its string tension α is nonzero for all values of the coupling constantg2, and obeys a bound α≧const·mDβ−1 for smallag2, with β=4π2/g2 and\(m_D^2 = (2{\beta \mathord{\left/ {\vphantom {\beta a}} \right. \kern-\nulldelimiterspace} a}^3 )e^{ - \beta \upsilon _{Cb} {{(0)} \mathord{\left/ {\vphantom {{(0)} 2}} \right. \kern-\nulldelimiterspace} 2}} (a = lattice spacing)\). A continuum limita→0,mD fixed, exists and represents a scalar free field theory of massmD. The string tension αm D −2 in physical units tends to ∞ in this limit. Characteristic differences in the behaviour of the model for large and small coupling constantag2 are found. Renormalization group aspects are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brydges, D.: Commun. Math. Phys.58, 313 (1978)Google Scholar
  2. 2.
    Brydges, D., Federbush, P.: Commun. Math. Phys.73, 197 (1980)Google Scholar
  3. 3.
    Brydges, D., Federbush, P.: J. Math. Phys.19, 2064 (1978)Google Scholar
  4. 4.
    Polyakow, A.M.: Nucl. Phys. B120, 429 (1977);Google Scholar
  5. 4a.
    Drell, S.D., Quinn, H.R., Svetitsky, B., Weinstein, M.: Phys. Rev. D19, 619 (1979).Google Scholar
  6. 4b.
    Glimm, J., Jaffe, A.: Commun. Math. Phys.56, 195 (1977); Phys. Lett.66B, 67 (1977)Google Scholar
  7. 4c.
    Peskin, M.E.: Ann. Phys. (N.Y.)113, 122 (1978);Google Scholar
  8. 4d.
    De Grand T.A., Toussaint, D.: Phys. Rev. D22, 2478 (1980), and [11]Google Scholar
  9. 5.
    Banks, T., Myerson, R., Kogut, J.: Nucl. Phys. B129, 493 (1977);Google Scholar
  10. 5a.
    Savit, R.: Phys. Rev. Lett.39, 55 (1977)Google Scholar
  11. 6.
    Göpfert, M., Mack, G.: Commun. Math. Phys.81, 97–126 (1981)Google Scholar
  12. 7.
    Mack, G.: Phys. Rev. Lett.45, 1378 (1980)Google Scholar
  13. 8.
    Villain, J.: J. Phys. (Paris)36, 581 (1975)Google Scholar
  14. 9.
    Glimm, J., Jaffe, A., Spencer, T.: Ann. Phys.101, 610, 631 (1975)Google Scholar
  15. 10.
    Glimm, J., Jaffe, A., Spencer, T.: The particle structure of the weakly coupledP(ϕ)2 model and other applications of high temperature expansions. Part II. The cluster expansion. In: Constructive quantum field theory. Velo, G., Wightman, A. (eds.): Lecture Notes in Physics, Vol. 25. Berlin, Heidelberg, New York: Springer 1973Google Scholar
  16. 11.
    Ukawa, A., Windey, P., Guth, A.H.: Phys. Rev. D21, 1013 (1980);Google Scholar
  17. 11a.
    Müller, V.F., Rühl, W.: Discrete field variables, the Coulomb gas, and low temperature behaviour. Preprint Kaiserslautern (January (1981))Google Scholar
  18. 12.
    Fröhlich, J. Spencer, T.: Phase diagrams and critical properties of (classical) Coulomb systems. Erice lectures 1980;Google Scholar
  19. 12a.
    Fröhlich, J., Spencer, T.: J. Stat. Phys.24, 617 (1981)Google Scholar
  20. 13.
    Wilson, K.: Phys. Rev. D2, 1473 (1970)Google Scholar
  21. 14.
    Kadanoff, L.P.: Physics2, 263 (1965)Google Scholar
  22. 15.
    Kogut, J., Wilson, K.: Phys. Rep.12C, 76 (1974)Google Scholar
  23. 16.
    Gawedzki, K., Kupiainen, A.: Commun. Math. Phys. 77, 31 (1980)Google Scholar
  24. 17.
    Gallavotti, G.: Ann. Mat. Pure Appl. C20, 1 (1978);Google Scholar
  25. 17a.
    Benfatto, G., et al.: Commun. Math. Phys.59, 143 (1978);71, 95 (1980)Google Scholar
  26. 18.
    Guth, A.H.: Phys. Rev. D21, 2291 (1980)Google Scholar
  27. 19.
    Osterwalder, K., Seiler, E.: Ann. Phys.110, 440 (1978)Google Scholar
  28. 20.
    Simon, B.: TheP(ϕ)2 Euclidean (quantum) field theory. Princeton Series in Physics. Princeton, New Jersey: Princeton University Press 1974Google Scholar
  29. 21.
    Guerra, F., Rosen, L., Simon, B.: Ann. Math.101, 111 (1975)Google Scholar
  30. 22.
    Gallavotti, G., Martin-Löf, A.: Commun. Math. Phys.25, 87 (1972)Google Scholar
  31. 23.
    Hasenfratz, A., Hasenfratz E., and Hasenfratz P.: Nucl. Phys. B180 [FS2], 353 (1981);Google Scholar
  32. 23a.
    Lüscher, M., Münster, G., Weisz, P.: Nucl. Phys. B180 [FS2], 1 (1981)Google Scholar
  33. 23b.
    Itzykon, C., Peskin, M., Zuber, I.: Phys. Lett.95B, 259 (1980)Google Scholar
  34. 24.
    Mack, G.: UnpublishedGoogle Scholar
  35. 25.
    Ogilvie, M.C.: Phys. Lett.100B, 163 (1981)Google Scholar
  36. 26.
    Mack, G.: Phys. Lett.78B, 263 (1978), and DESY 77/58 (August 1977)Google Scholar
  37. 27.
    Alexandroff, P.: Combinatorial topology. Rochester, New York: Graylock 1965; Cooke, G.E., Finney, R.L.: Homology of cell complexes. Princeton, New Jersey: Princeton University Press 1967Google Scholar
  38. 28.
    Blackett, D.B.: Elementary topology. New York: Academic Press 1967Google Scholar
  39. 29.
    Mack, G., Petkova, V.B.: Ann. Phys.123, 442 (1979);Google Scholar
  40. 29a.
    Fröhlich, J.: Phys. Lett.83B, 195 (1979)Google Scholar
  41. 30.
    Fröhlich, J.: Commun. Math. Phys.47, 233 (1976)Google Scholar
  42. 31.
    Mitter, P.K., Lowenstein, J.H.: Ann. Phys.105, 138 (1977)Google Scholar
  43. 32.
    Göpfert, M.: Ph. D. thesis, Hamburg 1981Google Scholar
  44. 33.
    Mack, G., Petkova, V.B.: DESY 79/22 (April 1979)Google Scholar
  45. 34.
    Duncan, A., Vaidya, H.: Phys. Rev. D20, 903 (1979)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Markus Göpfert
    • 1
  • Gerhard Mack
    • 1
  1. 1.II. Institut für Theoretische Physik der Universität HamburgHamburg 50Federal Republic of Germany

Personalised recommendations