Advertisement

Communications in Mathematical Physics

, Volume 82, Issue 4, pp 523–544 | Cite as

Horseshoes in perturbations of Hamiltonian systems with two degrees of freedom

  • Philip J. Holmes
  • Jerrold E. Marsden
Article

Abstract

This paper concerns Hamiltonian and non-Hamiltonian perturbations of integrable two degree of freedom Hamiltonian systems which contain homoclinic and periodic orbits. Our main example concerns perturbations of the uncoupled system consisting of the simple pendulum and the harmonic oscillator. We show that small coupling perturbations with, possibly, the addition of positive and negative damping breaks the integrability by introducing horseshoes into the dynamics.

Keywords

Neural Network Statistical Physic Complex System Periodic Orbit Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, R., Marsden, J.: Foundations of mechanics. 2nd edn. Reading, Mass.: Addision Wesley 1978Google Scholar
  2. Arnold, V.I.: Sov. Math. Dokl.156, 9–12 (1964)156, 9–12 (1964)Google Scholar
  3. Arnold, V.I., Avez, A.: Théorie ergodique des systèmes dynamiques. Paris: Gauthier-Villars (1967) (English edition: Benjamin-Cummings, Reading Mass., 1968)Google Scholar
  4. Barrow, J.: Chaotic behavior in general relativity (preprint) (1981)Google Scholar
  5. Birkhoff, G.D.: Dynamical systems. Colloq. Publ. IX, 2nd ed. Providence, R.I.: Am. Math. Soc., 1966Google Scholar
  6. Braun, M.: SIAM Rev.23, 61–93 (1981)Google Scholar
  7. Chow, S.-N., Hale, J., Mallet-Paret, J.: J. Diff. Eq'ns.37, 351–373 (1980)Google Scholar
  8. Churchill, R.C.: On proving the nonintegrability of a Hamiltonian system (preprint, Hunter College, C.U.N.Y.) (1980)Google Scholar
  9. Churchill, R.C., Pecelli, G., Rod, D.L.: A survey of the Hénon-Heiles Hamiltonian with applications to related examples. In: Lecture Notes in Physics, Vol. 93. Berlin, Heidelberg, New York: Springer 1979Google Scholar
  10. Devaney, R., Nitecki, Z.: Commun. Math. Phys.67, 137–148 (1979)Google Scholar
  11. Franks, J.: On the Hénon attractor (in preparation)Google Scholar
  12. Greenspan, B., Holmes, P.J.: Homoclinic orbits, subharmonics and global bifurcations in forced oscillations. In: Non-linear dynamics and turbulence. Barenblatt, G., Iooss, G., Joseph, D.D. (eds.). Pitman 1981 (to appear)Google Scholar
  13. Hale, J.K.: Ordinary differential equations. New York: Wiley 1969Google Scholar
  14. Holmes, P.: Phil. Trans. Roy. Soc. A292, 419–448 (1979)Google Scholar
  15. Holmes, P.: SIAM J. Appl. Math.38, 65–80;40, 167–168 (1980)Google Scholar
  16. Holmes, P.J., Marsden, J.E.: Arch. Rat. Mech. Anal.76, 135–167 (1981a)Google Scholar
  17. Holmes, P.J., Marsden, RJ.E.: Melnikov's method and Arnold diffusion for perturbations of integrable Hamiltonian systems. (1981b) (to appear in J. Math. Phys.)Google Scholar
  18. Holmes, P.J., Marsden, J.E.: Horseshoes and Arnold diffusion for Hamiltonian systems on Lie groups. (Preprint) (1981c)Google Scholar
  19. Lieberman, M.A.: Ann. N.Y. Acad. Sci.357, 119–142 (1980)Google Scholar
  20. Marsden, J., Weinstein, A.: Rep. Math. Phys.5, 121–130 (1974)Google Scholar
  21. McGehee, R., Meyer, K.: Homoclinic points of area preserving diffeomorphisms. Am. J. Math.96, 409–421 (1974)Google Scholar
  22. Melnikov, V.K.: Trans. Mosc. Math. Soc.12, 1–57 (1963)Google Scholar
  23. Moser, J.: Stable and random motions in dynamical systems, with special emphasis on celestial mechanics. Ann. Math. Studies, No. 77. Princeton, N.J.: Princeton University Press 1973Google Scholar
  24. Newhouse, S.: Topology12, 9–18 (1974)Google Scholar
  25. Newhouse, S.: Lectures on dynamical systems. In: Dynamical systems, Moser, J. (ed.), pp. 1–114. Boston: Birkhäuser 1980Google Scholar
  26. Palis, J.: Topology8, 385–405 (1969)Google Scholar
  27. Smale, S.: Bull. Am. Math. Soc. (1967)Google Scholar
  28. Tresser, C., Coullet, P., Arneodo, A.: Topological horseshoe and numerically observed chaotic behavior in the Hénon mapping (preprint, C.N.R.S., Université de Nice, France) (1979)Google Scholar
  29. Whittaker, E.T.: A treatise on the analytical dynamics of particles and rigid bodies, 4th edn. Cambridge: Cambridge University Press 1959Google Scholar
  30. Ziglin, S.L.: Sov. Math. Dokl.21, 296–299 (1980)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Philip J. Holmes
    • 1
  • Jerrold E. Marsden
    • 2
  1. 1.Department of Theoretical and Applied MechanicsCornell UniversityIthacaUSA
  2. 2.Department of MathematicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations