Acta Mathematica Hungarica

, Volume 46, Issue 1–2, pp 47–56 | Cite as

On the characterization of the dyadic derivative

  • W. Engels
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S.V. Bočkarev, On the Walsh-Fourier coefficients,Izv. Akad. Nauk SSSR, Ser. Math.,34 (1970), 203–208.Google Scholar
  2. [2]
    P. L. Butzer- H.J. Wagner, Approximation by Walsh polynomials and the concept of a derivative. In:Applications of Walsh-Functions (Proc. Naval. Res. Lab., Washington D. C., 27–29 March 1972; Eds. R. W. Zeek-A. E. Showalter) Washington,D.C. 1972, xi+401 pp.; pp.388–392.Google Scholar
  3. [3]
    P. L. Butzer- H. J. Wagner, On a Gibbs type derivative in Walsh—Fourier analysis with applications. In:Proceedings of the 1972 National Electronics Conference (Chicago, 9–10 Oct. 1972; Ed. R. E. Horton, Oak Brook, Illinois, 1972, xxvi+457 pp.; pp. 393–398.Google Scholar
  4. [4]
    P. L. Butzer-H. J. Wagner, Walsh-Fourier series and the concept of a derivative,Appl. Anal.,3 (1973), 29–46.Google Scholar
  5. [5]
    P. L. Butzer-H. J. Wagner, On dyadic analysis based on the pointwise dyadic derivative,Analysis Math.,1 (1975), 171–196.Google Scholar
  6. [6]
    P. L. Butzer-W. Splettstößer, Sampling principle for duration limited signals and dyadic Walsh analysis.Inf. Sci.,14 (1978), 93–106.Google Scholar
  7. [7]
    P. L. Butzer- W. Engles, Dyadic calculus and sampling theorems for functions with multidimensional domain. Part I: General Theory. Part II: Applications to sampling theorems,Information and Control (1983), 333–351; 351–363.Google Scholar
  8. [8]
    W. Engels-W. Splettstößer, On Walsh differentiable dyadically stationary random processes,IEEE Trans. on Inf. Theory, IT-28 (1982), 612–619.Google Scholar
  9. [9]
    J. E. Gibbs-M. J. Millard, Walsh functions as solutions of a logical differential equation,NPL: DES Rept. No. 1 (1969).Google Scholar
  10. [10]
    J. E. Gibbs, Some properties of functions on the non-negative integers less than 2n,NPL (National Physical Laboratory), Middlexes, England, DES Rept. No. 3. (1969).Google Scholar
  11. [11]
    J. E. Gibbs- B. Ireland, Some generalizations of the logical derivative,NPL: DES Rept. No. 8 (1971).Google Scholar
  12. [12]
    J. E. Gibbs- B. Ireland, Walsh functions and differentiation. In:Proceedings of the Symposium and Workshop on Applications of Walsh-Functions. Naval Research Laboratory Washington, D.C. 1974, (A. Bass, Edit.), (Springfield Va. 2251: National Technical Information Service) 1–29.Google Scholar
  13. [13]
    He Zelin, Derivatives and integrals of fractional order in generalized Walsh-Fourier analysis with application to approximation theory,J. Approximation Theory, in print.Google Scholar
  14. [14]
    N. R. Ladhawala, Absolute summability of Walsh-Fourier series,Pac. J. Math. 65 (1976), 103–108.Google Scholar
  15. [15]
    C. W. Onneweer, Fractional differentiation on the group of integers of thep-adic orp-series field,Analysis Math. 3 (1977), 119–130.Google Scholar
  16. [16]
    C. W. Onneweer, Differentiation on ap-adic orp-series field. In:Proceedings of the Conference “Linear Spaces and Approximation” in Oberwolfach (Schwarzwald), Herausgeber: P. L. Butzer und B. Sz.-Nagy, Birkhäuser, ISNM40, Basel 1978, 685 pp. 187–198.Google Scholar
  17. [17]
    C. W. Onneweer, On the definition of dyadic differentiation,Applicable Math.,9 (1979) 267–278.Google Scholar
  18. [18]
    C. W. Onneweer, Fractional differentiation and Lipschitz spaces on local fields,Trans. Amer. Math. Soc. 258 (1980), 155–165.Google Scholar
  19. [19]
    J. Pál- P. Simon, On a generalization of the concept of derivative.Acta Math. Acad. Sci. Hungar.,29 (1977), 155–164.Google Scholar
  20. [20]
    J. Pál, On a concept of a derivative among functions defined on a dyadic field,SIAM J. Math. Anal.,8 (1977), 375–391.Google Scholar
  21. [21]
    J. Pál, On almost everywhere differentiation of dyadic integral function onR +. In:Fourier Analysis and Approximation Theory, Proc. Colloq., Budapest, 1976, Colloq. Math. Soc. János Bolyai 19, North Holland, Amsterdam 1978, vol. II, 591–601.Google Scholar
  22. [22]
    R. E. A. C. Paley, A remarkable series of orthogonal functions,Proc. London Math. Soc. 34 (1932), 241–279.Google Scholar
  23. [23]
    R. Penney, On the rate of growth of the Walsh antidifferentiation operator.Proc. Amer. Math. Soc. 55 (1976), 57–61.Google Scholar
  24. [24]
    L. Saks,Théorie de l'Integrale (Warschau, 1933).Google Scholar
  25. [25]
    F. Schipp, Über einen Ableitungsbegriff von P. L. Butzer und H. J. Wagner,Math. Balkanica,4 (1974), 541–546.Google Scholar
  26. [26]
    F. Schipp, Über gewisse Maximaloperatoren,Annales Univ. Sci. Budapestinensis de Rolando Eötvös Nominatae. Sec. Math.,28 (1976), 145–152.Google Scholar
  27. [27]
    F. Schipp, On term by term dyadic differentiability of Walsh series,Analysis Math. 2 (1976), 149–154.Google Scholar
  28. [28]
    V. A. Skovorcov- W. R. Wade, Generalization of some results concerning Walsh series and the dyadic derivative.Analysis Math. 5 (1979), 249–255.Google Scholar
  29. [29]
    W. Splettstößer, Error analysis in the Walsh sampling theorem. In:1980 IEEE International Symposium on Electromagnetic Compatibility, Baltimore The Institute of Electrical and Electronic Engineers, Piscataway, N.Y. 409 pp.; 366–370.Google Scholar
  30. [30]
    H. J. Wagner, Ein Differential-und Integralkalkül in der Walsh— Fourier Analysis mit Anwendungen (Forschungsbericht des Landes Nordrhein-Westfalen Nr. 2334), Westdeutscher Verlag, Köln-Opladen 1973, 71 pp.Google Scholar
  31. [31]
    J. L. Walsh, A closed set of normal orthogonal functions,Amer. J. Math.,55 (1923), 5–24.Google Scholar
  32. [32]
    Zheng-Wei-xing- Su-Wei-yi, The logical derivative and intergral,Journ. of Math. Research and Exposition 1 (1981), 79–90.Google Scholar

Copyright information

© Akadémiai Kiadó 1985

Authors and Affiliations

  • W. Engels
    • 1
  1. 1.Lehrstuhl a für MathematikAachen University of TechnologyAachenFederal Republic of Germany

Personalised recommendations