Advertisement

Bulletin Volcanologique

, Volume 47, Issue 1, pp 105–124 | Cite as

Volcanic hazards at Fossa of Vulcano: Data from the last 6,000 years

  • G. Frazzetta
  • P. Y. Gillot
  • L. La Volpe
  • M. F. Sheridan
Article

Abstract

Stratigraphic reconstruction of the complete sequence of deposits that formed the Fossa cone of Vulcano has distinguished four principal eruptive cycles: Punte Nere, Palizzi, Commenda, and Pietre Cotte. At least three additional eruptive cycles, one of which ends with the Campo Sportivo lava, occur between deposits of the Punte Nere and Palizzi cycles. However, exposure is inadequate for their characterization. The assignment of the modern deposits that follow the Pietre Cotte lava is uncertain.

Deposits of each cycle follow a similar stochastic pattern that is controlled by a decrease in the effect of water/melt interaction. The normal sequence of pyroclastic products for each cycle starts with wet-surge beds, followed by dry-surge horizons, fall deposits, and finally lava flows. Absolute age determinations have been made on each cycle-ending lava flow.

Wet-surge deposits normally occur near the crater rim, whereas dry-surge deposits are more widespread, reaching the surrounding caldera wall in many places. Thick fall deposits are confined to a zone extending about 800 m from the crater rim. Lava flows normally reach the base of the cone. The greatest hazard at Fossa is related to surge eruptions. The thickness of dry-surge deposits on the flanks of the cone increases away from the crater, but they pinch out toward the source near the crater rim. SEM analysis of the surface textures of juvenile glass clasts from dry-surge deposits confirms that the dominant control on the eruptive mechanism is water/melt interaction. Only slight modifications are induced on grain surfaces during transport. Particles from the Palizzi dry-surge beds lack surface textures characteristic of fall pyroclasts which suggests that ballistic fragments were not incorporated into the dense portion of the turbulent surge cloud. A quantitative analysis of the dispersal of products from the Palizzi cycle allowed creation of a computer-generated map for this eruption.

Keywords

Lava Flow Fall Deposit Volcanic Hazard Caldera Wall Eruptive Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  1. Bottari, A., Caccamo, D., Lo Giudice, E. andNeri, G., 1981,Attività sismica osservata nelle stazioni della rete sismica eoliana nel primo quadrimestre 1981. I.I.V. open file report, 1/81.Google Scholar
  2. --, --,Cefali, F. Lo Giudice, E. andNeri, G., 1982,Centri di attività sismica in prossimità dell'arco vulcanico eoliano e nelle aree limitrofe durante il biennio 1980–1981. I.I.V. open file report, 1/82.Google Scholar
  3. Carapezza, M., Nuccio, P. M. andValenza, M., 1981,Genesis and Evolution of the Fumaroles of Vulcano (Aeolian Islands, Italy): a Geochemical Model. Bull. Volcanol.,44-3, p. 547–564.Google Scholar
  4. Cassignol, C., Cornette, Y., David, B. andGillot, P. Y., 1978,Technologie potassiumargon. Rapport CEA-R-4908, CEN Saclay.Google Scholar
  5. —— andGillot, P. Y., 1982,Range and Effectiveness of Unspiked Potassium-Argon Dating. In:G. S. Odin (Editor),Numerical Dating in Stratigraphy. Wiley, N.Y., p. 160–179.Google Scholar
  6. Castellet y Ballara, G., Crescenzi, R., Pompili, A. andTrigila, R., 1981,Magma Evolution of Vulcano Eruptive Complex: an Approach for a Deterministic Model of Volcanic Activity. Mem. Soc. Astron. Ital.,52, p. 369–373.Google Scholar
  7. Crowe, B. M. andFisher, R. V., 1973,Sedimentary Structures in Base-surge Deposits with Special Reference to Cross-bedding, Ubehebe Craters, Death Valley, California. Geol. Soc. America Bull.,84, p. 663–682.CrossRefGoogle Scholar
  8. De Fiore, O., 1922,Vulcano (Isole Eolie). Monografia. Zeitsch. fur Vulk.,3, 393 pp.Google Scholar
  9. Duffield, W. A., Bacon, C. R. andRoquemore, G. R., 1979,Origin of Reserve-graded Bedding in Air-fall Pumice, Coso Range, California. J. Volc. Geoth. Res.,5, p. 35–48.CrossRefGoogle Scholar
  10. Ferri, M., Grimaldi, M. andLuongo G., 1983,Surface Deformation of Vulcano Island (Sicily) and Their Relation to Seismicity and Volcanic Activity. Paper presented at XVIII IUGG General Assembly, Hamburg, West Germany.Google Scholar
  11. Fisher, R. V. andWaters, A. C., 1969,Base Surge Bed Forms in Maar Volcanoes. Am. J. Sci.,268, p. 157–180.Google Scholar
  12. Frazzetta, G., Lanzafame, G. andVillari, L., 1980,Frane e franosità nella Forgia Vecchia di Vulcano (Isole Eolie). I.I.V. open file report 1/80.Google Scholar
  13. ——, anSheridan M. F., 1983,Evolution of the Fossa Cone, Vulcano. J. Volc. Geoth. Res.,17, p. 329–360.CrossRefGoogle Scholar
  14. Frullani, A., 1979,Le eruzioni storiche di Vulcano (Isole Eolie). Natura dei prodotti, meccanismo eruttivo ed implicazione per il rischio vulcanico. Tesi di Laurea, Università di Pisa.Google Scholar
  15. Gillot, P. Y., Labeyrie, J., Lajoie, C., Valledas, G., Guerin, G., Poupeau, G. andDelibrias, G., 1979,Age of the Laschamp Magnetic Excursion revisited.Earth Planet. Sci. Letter, 42, p. 444–450.CrossRefGoogle Scholar
  16. —— andNativel, P., 1982,K-Ar Chronology of the Ultimate Activity of Piton des Neiges Volcano, Reunion Island, Indian Ocean. J. Volc. Geoth. Res.,13, p. 131–146.CrossRefGoogle Scholar
  17. ——, 1982,33,000-yr K-Ar dating of the Volcanotectonic Horst of the Island of Ischia, Gulf of Naples. Nature,299, p. 242–244.CrossRefGoogle Scholar
  18. Heiken, G., 1971,Tuff Rings: Examples from the Fort Rock-Cristmas Lake Valley Basin South Central Oregon. J. Geophys. Res.,83, p. 1961–1988.Google Scholar
  19. ——, 1972,Morphology and Petrography of Volcanic Ashes. Geol. Soc. Am. Bull.,83, p. 1961–1988.Google Scholar
  20. --, 1974,An Atlas of Volcanic Ash. Smithsonian Cont. Earth Sci., no. 12, 101 pp.Google Scholar
  21. Hsu, K. J., 1975,Catastrophic Debris Streams (Strutzstroms) Generated by Rockfalls. Geol. Soc. Am. Bull.,86, p. 129–140.CrossRefGoogle Scholar
  22. Keller, J., 1970, Die historichen Eruptionen von Vulcano und Lipari. Zeit. Deutsch. Geol. Geoch.,121, p. 179–185.Google Scholar
  23. ——, 1980,The island of Vulcano. Rend. Soc. Ital. Min. Petrol.,36, p. 369–414.Google Scholar
  24. Kortemeier, C. P. andSheridan, M. F., 1983,Role of Grain Type in Quantitative Surface Morphology of Pyroclasts from the Monte Guardia Sequence on Lipari, Italy. In:R. Gooley (Ed.),Microbeam Analysis — 1983. San Francisco, p. 43–46.Google Scholar
  25. Le Guern, F., Carbonelle, J. andD'Amore, F., 1980,Temperature and Heat Flow Measurements in a Fumarolic Area: Vulcano Island (Italy). Bull. Volcanol.,44-3, p. 569–575.Google Scholar
  26. Lorenz, V., 1974,Vesiculated Tuffs and Associated Features. Sedimentology,21, p. 273–291.Google Scholar
  27. Malin, M. C. andSheridan, M. F., 1982,Computer-assisted Mapping of Pyroclastic Surges. Science,217, p. 637–639.Google Scholar
  28. Martini, M., Piccardi, G. andCellini Legittimo, P., 1980,Geochemical Surveillance of Active Volcanoes: Data on the Fumaroles of Vulcano (Aeolian Islands, Italy). Bull. Volcanol.,43, p. 255–263.Google Scholar
  29. Mercalli, G. andSilvestri, O., 1891,Le eruzioni dell'isola di Vulcano, incominciate il 3 Agosto 1888 e terminate il 22 Marzo 1980. Relazione scientifica, 1891. Ann. Uff. Cent. Meteor. Geodin.,10 (4), 213 pp.Google Scholar
  30. Neri, G., 1983,Seismic Activity in the Aeolian Islands Volcanic Region. Bull. Seism. Soc. Am., in press.Google Scholar
  31. Rose, W. I., 1984,Active Pyroclastic Processes Studied with Scanning Electron Microscopy. In:J.R. Marshall (Ed.),Clastic Particles: Scanning Electron Microscopy and Shape Analysis of Sedimentary and Volcanic Clasts. Hutchinson-Ross, N. Y., (in press).Google Scholar
  32. Sheridan, M. F. andMalin, M. C., 1983,Application of Computer-assisted Mapping to Volcano Hazard Evaluation of Surge Eruptions: Vulcano, Lipari, and Vesuvius. J. Volc. Geoth. Res.,17, p. 187–202.CrossRefGoogle Scholar
  33. —— andMarshall, J. R., 1983a, SEM Examination of Pyroclastic Materials: Basic Considerations. Scanning Electron Microscopy, 1983, SEM Inc, Chicago, p. 113–118.Google Scholar
  34. ——, 1983b, Interpretation of Pyroclast Surface Features Using SEM Images. Jour. Volc. Geoth. Res.,16, p. 153–159.CrossRefGoogle Scholar
  35. -- and --, 1983c, Towards a Quantitative Analysis of Pyroclastic Grain-Textural Elements. In:J. R. Marshall (Ed.),Characterization and Quantification of Surface Features on Clastic and Pyroclastic Particles. Hutchinson Ross, N.Y., (in press).Google Scholar
  36. —— andWohletz, K. H.: 1981,Preliminary Report on the Pyroclastic Products of Vulcano. Mem. Soc. Astron. Ital.,52, p. 523–527.Google Scholar
  37. —— andUpdike, R. G., 1975,Sugarloaf Mountain Tephra — A Pleistocene Rhyolitic Deposit of Base-surge Origin in Northern Arizona.Geol. Soc. Am. Bull., 86, p. 571–581.CrossRefGoogle Scholar
  38. —— andWohletz, K. H., 1981,Hydrovolcanic Explosions: the Sysematics of Water-Pyroclast Equilibration. Science,212, p. 1387–1389.Google Scholar
  39. —— and ——, 1983,Hydrovolcanism: Basic Considerations and Review. J. Volc. Geoth. Res.,17, p. 1–29.CrossRefGoogle Scholar
  40. Sparks, R. S. J., 1978,The Dynamics of Bubble Formation and Growth in Magmas. J. Volc. Geoth. Res.,3, p. 1–57.CrossRefGoogle Scholar
  41. Walker, G. P. L. andCroasdale, R., 1972,Characteristics of Some Basaltic Pyroclasts. Bull. Volcanol.,35, p. 295–317.Google Scholar
  42. Wohletz, K. H., 1983,Mechanism of Hydrovolcanic Pyroclast Formation: Grain-size, Scanning Electronic Microscopy, and Experimental Data. J. Volc. Geoth. Res.,17, p. 31–63.CrossRefGoogle Scholar
  43. Wohletz, K. H. andKrinsley, D. K., 1983,Scanning Electron Microscopic Analysis of Basaltic Ash. In'B. D. Whalley andD. H. Krinsley (Eds),Scanning Electron Microscopy in Geology. Geo Abstracts, Norwich, England (in press).Google Scholar
  44. —— andSheridan, M. F., 1979,A Model of Pyroclastic Surge. In:C. E. Chapin andW. E. Elston (Eds),Ash-flow Tuffs. Geol. Soc. Amer. Sp. Pap.,180, p. 177–193.Google Scholar
  45. —— and ——, 1983,Hydrovolcanic Explosions II: Evolution of Basaltic Tuff Rings and Tuff Cones. Am. Jour. Sci.,283, p. 385–413.Google Scholar

Copyright information

© Stabilimento Tipografico Francesco Giannini & Figli 1984

Authors and Affiliations

  • G. Frazzetta
    • 1
  • P. Y. Gillot
    • 2
  • L. La Volpe
    • 3
  • M. F. Sheridan
    • 4
  1. 1.CNR Istituto Internazionale di VulcanologiaCataniaItaly
  2. 2.Centre des Faibles RadioactivitésGif-sur-YvetteFrance
  3. 3.Dipartimento GeomineralogicoUniversità di BariItaly
  4. 4.Dept of GeologyArizona State UniversityTempeUSA

Personalised recommendations