Sum of moments of convex polygons

  • G. Fejes Tóth


Convex Polygon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. S. M. Coxeter andL. Fejes Tóth, The total length of the edges of a non-Euclidean polyhedron with triangular faces,Quart. J. Math. Oxford,2,14 (1963), pp. 273–284.Google Scholar
  2. [2]
    L. Fejes Tóth, The isepiphan problem forn-hedra,Amer. J. Math.,70, (1948), pp. 174–178.Google Scholar
  3. [3]
    L. Fejes Tóth, Lagerungen in der Ebene, auf der Kugel und im Raum (second edition), Springer-Verlag, (Berlin—Heidelberg—New York, 1972).Google Scholar
  4. [4]
    L. Fejes Tóth, On the volume of a polyhedron in non-Euclidean spaces,Publ. Math.,4 (1956), pp. 256–261.Google Scholar
  5. [5]
    L. Fejes Tóth,Regular Figures, Pergamon Press (Oxford—London—New York—Paris, 1964).Google Scholar
  6. [6]
    L. Fejes Tóth, On the isoperimetric property of the regular tetrahedra,Publ. Math. Inst. Hung. Acad. Sci.,8 A (1963), pp. 53–57.Google Scholar
  7. [7]
    L. Fejes Tóth, Solid circle-packings and circle-coverings,Studia Sci. Math. Hung.,3 (1968), pp. 401–409.Google Scholar
  8. [8]
    A. Florian, Integrale auf konvexen Polyedern,Per. Math. Hung.,1 (1971), pp. 243–278.Google Scholar
  9. [9]
    A. Florian, Integrale auf konvexen Mosaiken,Per. Math. Hung. (to appear).Google Scholar
  10. [10]
    G. Hajós, Über den Durchschnitt eines Kreises und eines Polygons,Ann. Univ. Sci. Budapest, Sect. Math. 11 (1968), pp. 137–144.Google Scholar
  11. [11]
    Margit Imre, Kfeislagerungen auf Flächen konstanter Krümmung,Acta Math. Acad. Sci. Hung.,15 (1964), pp. 115–121.CrossRefGoogle Scholar
  12. [12]
    H. J. Landau andO. Slepian, On the optimality of the regular simplex code,Bell System Techn. J.,45 (1966), pp. 1247–1272.Google Scholar
  13. [13]
    B. Matérn andO. Person, On the extremum properties of the equilateral triangular lattice and the regular hexagonal network, Förtechning Över,Rapporter och Uppsatser Stockholm, Nr.7 (1965).Google Scholar

Copyright information

© Akadémiai Kiadó 1973

Authors and Affiliations

  • G. Fejes Tóth
    • 1
  1. 1.Department of ProbabilityEötvös Loaránd UniversityBudapest

Personalised recommendations