Skip to main content
Log in

Molecular detection of genetic defects in congenital adrenal hyperplasia due to 21-hydroxylase deficiency: A study of 27 families

  • Medical Genetics
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase (21-OHase) deficiency is inherited as an autosomal recessive trait. Patients can present with the salt wasting, simple virilizing or a non-classical form of the disease. The gene for P450C21, the enzyme carrying 21-OHase activity, has been mapped to the major histocompatibility complex on chromosome 6p. Using molecular hybridisation techniques we have studied the genetic defect in 27 families with one or more affected off-spring diagnosed and treated at the University Hospital of Essen. DNA samples were digested with restriction endonucleaseTaqI,PvuII,BglII, andEcoRI and analysed by Southern blot hybridisation with the cDNA probe pC21/3c. Eleven of 40 haplotypes associated with the salt wasting form were found to have a large deletion of 30 kb affecting the 5′ end of the active 21-OHase gene and the 3′ end of the closely linked pseudogene. Results in another 11 cases are compatible with gene conversion; 18 cases were not informative. The 30 kb deletion was associated with a combination of the HLA antigens Bw47 and DR7 in 7 of 11 cases. In the haplotypes with gene conversion, no linkage disequilibrium to HLA antigens was found. No apparent gene alterations were detected in simple virilizing and non-classical haplotypes. The direct detection of the genetic defect in 55% of the salt wasting haplotypes may help to improve predictive testing in families with CAH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CAH:

congenital adrenal hyperplasia

MHC:

major histocompatibility complex

NC:

non-classical forms

21-OHase:

21-hydroxylase

17-OHP:

17-hydroxyprogesterone

SV:

simple virilising form

SW:

salt wasting

References

  1. Aston CE, Sherman SL, Morton NE, Speiser PW, New MI (1988) Genetic mapping of the 21-hydroxylase locus: estimation of small recombination frequencies. Am J Hum Genet 43:304–310

    PubMed  Google Scholar 

  2. Carroll MC, Campbell RD, Porter RR (1985) Mapping of steroid 21-hydroxylase genes adjacent to complement component C4 genes in HLA, the major histocompatibility complex in man. Proc Natl Acad Sci USA 82:521–525

    PubMed  Google Scholar 

  3. Carroll MC, Palsdottir A, Belt KT, Porter RR (1985) Deletion of complement C4 and steroid 21-hydroxylase genes in the HLA class III region. EMBO J 4:2547–2552

    PubMed  Google Scholar 

  4. Collier S, Sinnott PJ, Dyer PA, Price DA, Harris R, Strachan T (1989) Pulsed field gel electrophoresis identifies a high degree of variability in the number of tandem 21-hydroxylase and complement C4 gene repeats in 21-hydroxylase deficiency haplotypes. EMBO J 8:1393–1402

    PubMed  Google Scholar 

  5. Donohoue PA, Jospe N, Migeon CJ, McLean RH, Bias WB, White PC, Van Dop C (1986) Restriction maps and restriction fragment length polymorphisms of the human 21-hydroxylase genes. Biochem Biophys Res Commun 136:722–729

    Article  PubMed  Google Scholar 

  6. Donohoue PA, Van Dop C, Migeon CJ, McLean RH, Bias WB (1987) Coupling of HLA-A3, Cw6,Bw47,DR7 and a normal CA21HB steroid 21-hydroxylase gene in the old order Amish. J Clin Endocrinol Metab 65:980–986

    PubMed  Google Scholar 

  7. Donohoue PA, Jospe N, Migeon CJ, Van Dop C (1989) Two distinct areas of unequal crossingover within the steroid 21-hydroxylase genes produce absence of CYP21B. Genomics 5: 397–406

    Article  PubMed  Google Scholar 

  8. Doxiadis G, Doxiadis I, Frenz G, Vögeler U, Grosse-Wilde H (1989) Relevance of complotyping and subtyping of MHC class I gene products in haplotype definition for allogeneic marrow transplantation. Bone Marrow Transplant 4:17–22

    PubMed  Google Scholar 

  9. Dupont B, Oberfield SE, Smithwick EM, Lee TD, Levine LS (1977) Close genetic linkage between HLA and congenital adrenal hyperplasia (21-hydroxylase deficiency). Lancet II:1309–1312

    Article  Google Scholar 

  10. Garlepp MJ, Wilton AN, Dawkins RL, White PC (1986) Rearrangement of 21-hydroxylase genes in disease-associated MHC supratypes. Immunogenetics 23:100–105

    Article  PubMed  Google Scholar 

  11. Grosse-Wilde H, Weil J, Albert ED, Scholz S, Bidlingmaier F, Sippel WG, Knorr D (1979) Genetic linkage studies between congenital adrenal hyperplasia and the HLA blood group system. Immunogenetics 8:41–49

    Article  Google Scholar 

  12. Grosse-Wilde H, Valentine-Thon E, Vögeler U, Passarge E, Lorenzen F, Sippel EG, Bidlingmaier F, Knorr D (1988) HLA-A,B,C,DR typing and 17-OHP determination for second trimester prenatal diagnosis of 21-hydroxylase deficient CAH. Prenat Diagn 8:131–143

    PubMed  Google Scholar 

  13. Harada F, Kimura A, Iwanaga T, Shimozawa K, Yata J, Sasazuki T (1987) Gene conversion-like events cause steroid 21-hydroxylase deficiency in congenital adrenal hyperplasia. Proc Natl Acad Sci USA 84:8091–8094

    PubMed  Google Scholar 

  14. Higashi Y, Yoshioka H, Yamane M, Gotoh O, Fujii-Kuriama Y (1986) Complete nucleotide sequence of two steroid 21-hydroxylase genes tandemly arranged in human chromosome: A pseudogene and a genuine gene. Proc Natl Acad Sci USA 83:2841–2845

    PubMed  Google Scholar 

  15. Higashi Y, Tanae A, Inoue H, Hiromasa T, Fujii-Kuriyama Y (1988) Aberrant splicing and missense mutations cause steroid 21-hydroxylase (P-450c21) deficiency in humans: possible gene conversion products. Proc Natl Acad Sci USA 85:7486–7490

    PubMed  Google Scholar 

  16. Higashi Y, Tanae A, Inoue H, Fujii-Kuriyama Y (1988) Evidence for frequent gene conversions in the steroid 21-hydroxylase (P450c21) gene: implications for steroid 21-hydroxylase deficiency. Am J Hum Genet 42:17–25

    PubMed  Google Scholar 

  17. Horsthemke B, Greger V, Barnert HJ, Höpping W, Passarge E (1987) Detection of submicroscopic deletions and a DNA polymorphism at the retinoblastoma locus. Hum Genet 76: 257–261

    Article  PubMed  Google Scholar 

  18. Jospe N, Donohoue PA, Van Dop C, McLean RH, Bias W, Migeon CJ (1987) Prevalence of polymorphic 21-hydroxylase gene (CA21HB) mutations in salt-losing congenital adrenal hyperplasia. Biochem Biophys Res Commun 142:798–804

    Article  PubMed  Google Scholar 

  19. Jospe N, Donohoue PA, Van Dop C, Migeon CJ (1988) Crossing-over sites within the 21-hydroxylase (CYP21) genes causing salt-losing congenital adrenal hyperplasia (CAH) (abstract). Pediatr Res 23:279A

    Google Scholar 

  20. Killeen AA, Sane KS, Orr HT (1991) Molecular and endocrine characterization of a mutation involving a recombination between the steroid 21-hydroxylase functional gene and pseudogene. J Steroid Biochem Mol Biol 38(6):677–686

    Article  PubMed  Google Scholar 

  21. Kochhan L, Janssen S, Knorr D, Olek K, Bidlingmaier F (1990) HLA class I-, complement C4- and 21-hydroxylase probes in the genetic analysis of 21-hydroxylase deficiency. J Clin Chem Clin Biochem 28(6):413–417

    PubMed  Google Scholar 

  22. Matteson KJ, Phillips JA III, Miller WL, Chung B, Orlando PJ, Frisch H, Ferrandes A, Burr IM (1987) P450XXI (steroid 21-hydroxylase) gene deletions are not found in family studies of congenital adrenal hyperplasia. Proc Natl Acad Sci USA 84:5858–5862

    PubMed  Google Scholar 

  23. Miller WL (1988) Gene conversions, deletions and polymorphism in congenital adrenal hyperplasia. Am J Hum Genet 42:4–7

    PubMed  Google Scholar 

  24. Miller WL, Levine LS (1987) Molecular and clinical advances in congenital adrenal hyperplasia. J Pediatr 111:1–17

    PubMed  Google Scholar 

  25. Morel Y, Andre J, Uring-Lambert B, Hauptmann G, Betuel H, Tosi M, Forest MG, David M, Bertrand J, Miller WL (1989) Rearrangement and point mutations of P450c21 genes are distinguished by five restriction endonuclease haplotypes identified by a new probing strategy in 57 families with congenital adrenal hyperplasia. J Clin Invest 83:527–536

    PubMed  Google Scholar 

  26. O'Neill GJ (1985) C4 polymorphism: use of monoclonal antibody to distinguish between C4A and C4B locus products. Vox Sang 47:362–365

    Google Scholar 

  27. Owerbach D, Crawford YM, Draznin MB (1990) Direct analysis of CYP21B genes in 21-hydroxylase deficiency using polymerase chain reaction amplification. Mol Cell Endocrinol 4 (1):125–131

    Google Scholar 

  28. Partanen J, Koskimies S, Sipila I, Lisanen V (1989) Major histocompatibility complex gene markers and restriction fragment analysis of steroid 21-hydroxylase (CYP21) and complement C4 genes in classical congenital adrenal hyperplasia patients in a single population. Am J Hum Genet 44:660–670

    PubMed  Google Scholar 

  29. Peter M, Sippell WG, Lorenzen F, Willig RP, Westphal E, Grosse-Wilde H (1990) Improved test to identify heterozygotes for congenital adrenal hyperplasia without index case examination. Lancet 335:1296–1299

    Article  PubMed  Google Scholar 

  30. Rodrigues NR, Dunham I, Yu CA, Carroll MC, Porter RR, Campbell RD (1987) Molecular characterization of the HLA-linked steroid 21-hydroxylase B gene from an individual with congenital adrenal hyperplasia. EMBO J 6:1653–1661

    PubMed  Google Scholar 

  31. Rumsby G, Carroll MC, Porter RR, Grant DB, Hjelm M (1986) Deletion of the steroid 21-hydroxylase and complement C4 genes in congenital adrenal hyperplasia. J Med Genet 23:204–209

    PubMed  Google Scholar 

  32. Schneider PM, Carroll MC, Alper CA, Rittner C, Whitehead AS, Yunis EJ, Colten HR (1986) Polymorphism of the human complement C4 and steroid 21-hydroxylase genes. J Clin Invest 78:650–657

    PubMed  Google Scholar 

  33. Terasaki PI, McClelland JD (1964) Microdroplet assay of human cytotoxins. Nature 204:998–1000

    Google Scholar 

  34. White PC, New MI, Dupont B (1984) HLA-linked congenital adrenal hyperplasia results from a defective gene encoding a cytochrome P450 specific for steroid 21-hydroxylation. Proc Natl Acad Sci USA 81:7505–7509

    PubMed  Google Scholar 

  35. White PC, Grossberger D, Onufer BJ, Chaplin DD, New MI, Dupont B, Strominger J (1985) Two genes encoding steroid 21-hydroxylase are located near the genes encoding the fourth component of complement in man. Proc Natl Acad Sci USA 82:1089–1093

    PubMed  Google Scholar 

  36. White PC, New MI, Dupont B (1986) Structure of the human steroid 21-hydroxylase genes. Proc Natl Acad Sci USA 83:5111–5115

    PubMed  Google Scholar 

  37. White PC, New MI, Dupont B (1987) Congenital adrenal hyperplasia. N Engl J Med 316:1519–1524

    PubMed  Google Scholar 

  38. White PC, Vitek A, Dupont B, New MI (1988) Characterization of frequent deletions causing steroid 21-hydroxylase deficiency. Proc Natl Acad Sci USA 85:4436–4440

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strumberg, D., Hauffa, B.P., Horsthemke, B. et al. Molecular detection of genetic defects in congenital adrenal hyperplasia due to 21-hydroxylase deficiency: A study of 27 families. Eur J Pediatr 151, 821–826 (1992). https://doi.org/10.1007/BF01957933

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01957933

Key words

Navigation