The Journal of Membrane Biology

, Volume 5, Issue 4, pp 366–385 | Cite as

Determination of the driving force of the Na+ pump in toad bladder by means of vasopressin

  • Jacob Yonath
  • Mortimer M. Civan


Vasopressin stimulates Na+ transport across toad bladder largely or entirely by decreasing the resistance to Na+ entry into the transporting epithelial cells. Therefore, the hormone should induce proportional changes in short circuit current (I S ) and tissue conductance; the ratio of these changes should equal the driving force (ENa) of the Na+ pump.

Administration of vasopressin provided a rapid, reversible and reproducible technique for the measurement ofENa. Values calculated forENa ranged from 74 to 186 mV, in agreement with previously published estimates. The results were not dependent on the vasopressin concentration over a wide range of concentrations.

Ouabain, an agent thought to inhibit specifically the Na+ pump, decreased bothI S andENa. On the other hand, amiloride, a diuretic thought to block specifically Na+ entry, markedly reducedI S , without reducingENa.

It is concluded that vasopressin constitutes a probe for the rapid reproducible determination ofENa under a wide variety of physiological conditions.


Epithelial Cell Human Physiology Physiological Condition Vasopressin Driving Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bentley, P. J. 1968. Amiloride: A potent inhibitor of sodium transport across the toad bladder.J. Physiol. 195:317.PubMedGoogle Scholar
  2. 2.
    — 1968. Action of AmphotericinB on the toad bladder: Evidence for a sodium transport along two pathways.J. Physiol. 196:703.PubMedGoogle Scholar
  3. 3.
    Civan, M. M. 1970. Effects of active sodium transport on current-voltage relationship of toad bladder.Amer. J. Physiol. 219:234.PubMedGoogle Scholar
  4. 4.
    —, Frazier, H. S. 1968. The site of the stimulatory action of vasopressin on sodium transport in toad bladder.J. Gen. Physiol. 51:589.PubMedGoogle Scholar
  5. 5.
    —, Kedem, O., Leaf, A. 1966. Effect of vasopressin on toad bladder under conditions of zero net sodium transport.Amer. J. Physiol. 211:569.PubMedGoogle Scholar
  6. 6.
    Cuthbert, A. W., Painter, E. 1968. Independent action of antidiuretic hormone, theophylline and cyclic 3′,5′-adenosine monophosphate on cell membrane permeability in frog skin.J. Physiol. 199:593.PubMedGoogle Scholar
  7. 7.
    DiBona, D. R., Civan, M. M., Leaf, A. 1969. The anatomic site of the transepithelial permeability barriers of toad bladder.J. Cell Biol. 40:1.PubMedGoogle Scholar
  8. 8.
    Edelman, I. S., Lipton, P. 1969. Effects of regulatory hormones on intracellular Na+ and K+ of toad bladder epithelial cells.Biophys. J. Soc. Abst. 9:FAM-E6.Google Scholar
  9. 9.
    Essig, A. 1965. Active sodium transport in the toad bladder despite removal of serosal potassium.Amer. J. Physiol. 208:401.PubMedGoogle Scholar
  10. 10.
    Finkelstein, A. 1964. Electrical excitability of isolated frog skin and toad bladder.J. Gen. Physiol. 47:545.PubMedGoogle Scholar
  11. 11.
    Finn, A. L. 1968. Separate effects of sodium and vasopressin on the sodium pump in toad bladder.Amer. J. Physiol. 215:849.PubMedGoogle Scholar
  12. 12.
    Frazier, H. S. 1962. The electrical potential profile of the isolated toad bladder.J. Gen. Physiol. 45:515.PubMedGoogle Scholar
  13. 13.
    —, Dempsey, E. F., Leaf, A. 1962. Movement of sodium across the mucosal surface of the isolated toad bladder and its modification by vasopressin.J. Gen. Physiol. 45:529.PubMedGoogle Scholar
  14. 14.
    —, Leaf, A. 1963. The electrical characteristics of active sodium transport in the toad bladder.J. Gen. Physiol. 46:491.PubMedGoogle Scholar
  15. 15.
    Gatzy, J. T., Clarkson, T. W. 1965. The effect of mucosal and serosal solution cations on bioelectric properties of the isolated toad bladder.J. Gen. Physiol. 48:647.PubMedGoogle Scholar
  16. 16.
    Herrera, F. C. 1966. Action of ouabain on sodium transport in toad urinary bladder.Amer. J. Physiol. 210:980.PubMedGoogle Scholar
  17. 17.
    Janáćek, K., Rybová, R. 1967. Stimulation of the sodium pump in frog bladder by oxytocin.Nature 215:992.PubMedGoogle Scholar
  18. 18.
    —— 1970. Nonpolarized frog bladder preparation: The effects of oxytocin.Pflüg. Arch. Ges. Physiol. 318:294.CrossRefGoogle Scholar
  19. 19.
    Kedem, O., Essig, A. 1965. Isotope flows and flux ratios in biological membranes.J. Gen. Physiol. 48:1047.PubMedGoogle Scholar
  20. 20.
    Leaf, A. 1965. Transepithelial transport and its hormonal control in toad bladder.Ergeb. Physiol. 56:215.Google Scholar
  21. 21.
    Linderholm, H. 1952. Active transport of ions through frog skin with special reference to the action of certain diuretics.Acta Physiol. Scand. 27: suppl., 97.PubMedGoogle Scholar
  22. 22.
    Macknight, A. D. C., Leaf, A., Civan, M. M. 1970. Vasopressin: Evidence for the cellular site of the induced permeability change.Biochim. Biophys. Acta 222:560.PubMedGoogle Scholar
  23. 23.
    Menninger, J. R., Snell, F. M., Spangler, R. A. 1960. Voltage clamp for biological investigations.Rev. Sci. Instr. 31:519.CrossRefGoogle Scholar
  24. 24.
    Orloff, J., Handler, J. S. 1967. The role of adenosine 3′,5′-phosphate in the action of antidiuretic hormone.Amer. J. Med. 42:757.PubMedGoogle Scholar
  25. 25.
    Sharp, G. W. G., Leaf, A. 1964. Biological action of aldosteronein vitro.Nature 202:1185.PubMedGoogle Scholar
  26. 26.
    Ussing, H. H., Windhager, E. E. 1964. Nature of shunt path and active sodium transport through frog skin epithelium.Acta Physiol. Scand. 61:484.PubMedGoogle Scholar
  27. 27.
    —, Zerahn, K. 1951. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin.Acta Physiol. Scand. 23:110.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1971

Authors and Affiliations

  • Jacob Yonath
    • 1
    • 2
    • 3
  • Mortimer M. Civan
    • 1
    • 2
    • 3
  1. 1.Laboratory of Renal BiophysicsMassachusetts General HospitalBoston
  2. 2.Departments of Medicine of the Massachusetts General Hospital and Harvard Medical SchoolBoston
  3. 3.Department of Polymer Researchthe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations