Acta Mathematica Hungarica

, Volume 42, Issue 3–4, pp 319–330 | Cite as

On the strong law of large numbers for pairwise independent random variables

  • S. Csörgő
  • K. Tandori
  • V. Totik
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. V. Bočkarev, Rearrangements of Fourier-Walsh series,Izv. Akad. Nauk SSS, RSer. Mat. 43 (1979), 1025–1041 (Russian).Google Scholar
  2. [2]
    N. Etemadi, An elementary proof of the strong law of large numbers,Z. Wahrscheinlichkeitstheorie verw. Gebiete,55 (1981), 119–122.CrossRefGoogle Scholar
  3. [3]
    S. Kaczmarcz, Notes on orthogonal series. II,Studia Math.,5 (1943), 103–106.Google Scholar
  4. [4]
    D. Menchoff, Sur les séries de fonctions orthogonales (Première partie),Fundamenta Math.,4 (1923), 82–105.Google Scholar
  5. [5]
    S. Nakata, On the unconditional convergence of Walsh series,Anal. Math.,5 (1979), 201–205.CrossRefGoogle Scholar
  6. [6]
    P. Révész,The strong laws of large numbers. Academic Press (New York, 1967).Google Scholar
  7. [7]
    K. Tandori, Über die Divergenz der Walshschen Reihen,Acta Sci. Math Szeged,27 (1966), 261–263.Google Scholar
  8. [8]
    K. Tandori, Bemerkung zum Gesetzt der großen Zahlen,Periodica Math. Hung.,2 (1972), 33–39.Google Scholar

Copyright information

© Akadémiai Kiadó 1983

Authors and Affiliations

  • S. Csörgő
    • 1
  • K. Tandori
    • 1
  • V. Totik
    • 1
  1. 1.Bolyai InstituteJózsef Attila UniversitySzegedHungary

Personalised recommendations