Advertisement

Pharmaceutisch Weekblad

, Volume 9, Issue 6, pp 315–320 | Cite as

Investigation into the mechanism of copper uptake by Mycoplasma gallisepticum in the prescence of 2,9-dimethyl-1,10-phenanthroline

  • Hans-Dieter Gaisser
  • Henk Van Der Goot
  • Ariaan H. Stouthamer
  • Henk Timmerman
Original Articles
  • 69 Downloads

Abstract

In the presence of copper certain 2,2′-bipyridyls show antimycoplasmal activity, whereas copper itself causes a toxic effect. In this paper results are presented to elucidate the mechanism of copper uptake in the presence of 2,9-dimethyl-1,10-phenanthroline. The time course of copper and/or ligand uptake under the applied conditions is consistent with a carrier transport mechanism in which 2,9-dimethyl-1,10-phenanthroline operates as a carrier for copper ions. The influence of valinomycin on copper uptake indicates that the transmembrane potential is not the driving force in the carrier process.

Key words

Membrane potentials Membrane transport Mycoplasma gallisepticum Oxidation-reduction potentials Potassium Uptake, copper Uptake, 2,9-dimethyl-1,-10-phenanthroline Valinomycin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Van der Goot H. 1-Aminoisoquinolines-Synthesis and properties. Amsterdam: Free University, 1972. Dissertation.Google Scholar
  2. 2.
    Van der Goot H, Oostendorp JG, Nauta WTh. The growth-inhibitory action of some 1-aminoisoquinolines and related compounds onMycoplasma gallisepticum. Eur J Med Chem 1975;10:603–6.Google Scholar
  3. 3.
    Pijper PJ, Van der Goot H, Timmerman H, Nauta WTh. Synthesis and antimycoplasmal activity of 2,2′-bipyridyl analogues. Part I. I-Amino-3-(2-pyridyl)isoquinolines. Eur J Med Chem 1984;19:389–92.Google Scholar
  4. 4.
    Pijper PJ, Van der Goot H, Timmerman H, Nauta WTh. Synthesis and antimycoplasmal activity of 2,2′-bipyridyl analogues. Part II. I-Substituted-3-(2-pyridyl)isoquinolines. Eur J Med Chem 1984;19:393–7.Google Scholar
  5. 5.
    Pijper PJ, Van der Goot H, Timmerman H, Nauta WTh. Synthesis and antimycoplasmal activity of 2,2′-bipyridyl analogues. Part III. 1,10-Phenanthrolines and 2,2′-bipyridyls. Eur J Med Chem 1984;19:399–404.Google Scholar
  6. 6.
    Antic BM, Van der Goot H, Nauta WTh, et al. The influence of copper ions on the growth-inhibitory effect of 2,2′-bipyridyl and related compounds on mycoplasmas. Eur J Med Chem 1977;12:573–5.Google Scholar
  7. 7.
    Antic BM, Van der Goot H, Nauta WTh, et al. The influence of copper ions on the growth-inhibitory effect of 2,2′-bipyridyl and related compounds on mycoplasmas. Part 11. Eur J Med Chem 1978;13:565–8.Google Scholar
  8. 8.
    Pijper PJ. Synthesis and antimycoplasmal activity of compounds structurally related to 2,2′-bipyridyl. Amsterdam: Free University, 1980. Dissertation.Google Scholar
  9. 9.
    Smit H, Van der Goot H, Nauta WTh, et al. Mode of action of the copper(1) complex of 2,9-dimethyl-1,10-phenanthroline onMycoplasma gallisepticum. Antimicrob Agents Chemother 1981;20:455–62.PubMedGoogle Scholar
  10. 10.
    Smit H, Van der Goot H, Nauta WTh, et al. Studies on the mechanism of action of the copper(I) complex of 2,9-dimethyl-1,10-phenanthroline onMycoplasma gallisepticum. Antimicrob Agents Chemother 1982;21:881–6.PubMedGoogle Scholar
  11. 11.
    Gaisser H-D, Van der Goot H, Timmerman H. The influence of 2,2′-bipyridyl analogues on copper uptake byMycoplasma gallisepticum. Eur J Med Chem 1985;20:513–6.Google Scholar
  12. 12.
    Rubbo S, Albert A, Gibson M. The influence of chemical constitution on antibacterial activity. v. The antibacterial action of 8-hydroxyquinoline (oxine). Br J Exp Pathol 1950;31:425–41.PubMedGoogle Scholar
  13. 13.
    Albert A, Gibson M, Rubbo S. The influence of chemical constitution on antibacterial activity. VI. The antibacterial action of 8-hydroxyquinoline (oxine). Br J Exp Pathol 1953;34:119–30.PubMedGoogle Scholar
  14. 14.
    McLaughlin SGA, Szabo G, Ciani S, Eisenmann E. The effect of a cyclic polyether on the electrical properties of phospholipid bilayer membranes. J Membr Biol 1972;9:3–36.CrossRefGoogle Scholar
  15. 15.
    Peterson CJ, Frensdorff HK. Makrocyclische Polyäther und ihre Komplexe. Angew Chemie 1972;84:16–26.CrossRefGoogle Scholar
  16. 16.
    Stark G, Benz R. The transport of potassium through lipid bilayer membranes by neutral carriers valinomycin and monactin. J Membr Biol 1971;5:133–53.Google Scholar
  17. 17.
    Eriks JC, Gaisser H-D, Van der Goot H, Timmerman H. Determination of formation constants of copper(II) complexes of Adler medium components with a solid-state copper(II) ion-selective electrode. Pharm Weekbl [Sci] 1983;5:314–24.Google Scholar
  18. 18.
    Smit H, Vis RD, Pijper PJ, Van der Goot H, De Bolster MWG. Synthesis of 2,9-[14C]dimethyl-1,10-phenanthroline and the production of copper-67. J Label Compd Radiopharm 1981;18:1015–21.Google Scholar
  19. 19.
    Schummer U, Schiefer H-G, Gerhardt U. Mycoplasma membrane potential determined by potential-sensitive fluorescent dyes. Curr Microbiol 1979;2:191–4.Google Scholar
  20. 20.
    Matsuno S, Okhi A, Tagaki M, Keihei U. Bathocuproine-mediated copper transport through liquid membrane driven by redox potential. Chem Lett 1981:1543–6.Google Scholar

Copyright information

© Royal Dutch Association for Advancement of Pharmacy 1987

Authors and Affiliations

  • Hans-Dieter Gaisser
    • 1
  • Henk Van Der Goot
    • 1
  • Ariaan H. Stouthamer
    • 2
  • Henk Timmerman
    • 1
  1. 1.Department of PharmacochemistryFree UniversityHV Amsterdamthe Netherlands
  2. 2.Department of MicrobiologyFree UniversityHV Amsterdamthe Netherlands

Personalised recommendations