Penicillins and cephalosporins
Physicochemical properties and analysis in pharmaceutical and biological matrices
Review Articles
- 486 Downloads
- 10 Citations
Abstract
Penicillins and cephalosporins belong to the most prescribed antibiotics. Despite the relatively extended knowledge of these drugs, the qualitative and quantitative analysis of the compounds still gives rise to many problems. These difficulties are due to the chemical instability of the common Β-lactam nucleus, the minor differences in chemical structures between the analogues, and the complex and relatively fast degradation of the compounds in aqueous solutions. In this review a compilation of the physicochemical properties, the degradation routes and methods for analysis of these substances in biological and other matrices is presented.
Key words
Cephalosporins Chemistry, physical Chromatography Drug stability Penicillins Polarography Spectrum analysis Structure-activity relationship TitrimetryPreview
Unable to display preview. Download preview PDF.
References
- 1.Documentatie en Informatiedienst KNMP. Informatorium Medicamentorum. 's-Gravenhage: Koninklijke Nederlandse Maatschappij ter bevordering der Pharmacie 1986:87–98, 109–25.Google Scholar
- 2.Morin RB, Gorman G, eds. Penicillins and cephalosporins. New York: Academic Press Inc., 1982. (Chemistry and biology of beta-lactam antibiotics. Vol. 1.)Google Scholar
- 3.Flynn EH, ed. Cephalosporins and penicillins. Chemistry and biology. New York: Academic Press, 1972.Google Scholar
- 4.Gregory GI, ed. Recent advantages in the chemistry of beta-lactam antibiotics. London: Royal Society of Chemistry, 1981.Google Scholar
- 5.Edwards D. Antimicrobial drug action. London: MacMillan Press Ltd., 1980.Google Scholar
- 6.Braendle H-P, Hof H. Die antibakterielle Wirkung der beta-Lactam-Antibiotika. Med Klin 1986;81:125–9.PubMedGoogle Scholar
- 7.Williams RAD, Kruk ZL. The biochemistry and pharmacology of antibacterial agents. London: Croom Helm Ltd., 1981.Google Scholar
- 8.Munch R, Luthy R, Siegenthaler W. Betalactamase inhibition by clavulanic acid and other inhibitors with beta-lactam structure. Theoretical aspects and clinical applications. In: Gialdoni Grassi G, Sabath LD, eds. New trends in antibiotics: research and therapy. Amsterdam: Elsevier/North Holland Biomedical Press, 1981:145–64.Google Scholar
- 9.Reynolds JEF, ed. Martindale. The Extra Pharmacopoeia. 28th ed. London: The Pharmaceutical Press, 1982.Google Scholar
- 10.Mandell GL, Sande MA. Antimicrobial agents. In: Gilman AG, Goodman LS, Rail TW, Murad F, eds. The Pharmacological Basis of Therapeutics. 7th ed. New York: Macmillan Publishing Company, 1985:1115–49.Google Scholar
- 11.Midvedt T. Penicillins, cephalosporins and tetracyclines. In: Dukes MNG, ed. Side Effects of Drugs Annual 10. Amsterdam: Elsevier Science Publishers BV, 1986:234–40.Google Scholar
- 12.Bundgaard H. Penicillin allergy. Kinetics of penicilloylation of serum albumins by various penicillins. Acta Pharm Suec 1977;14:391–402.PubMedGoogle Scholar
- 13.Page MI. The mechanisms of reactions of beta-lactam antibiotics. Acc Chem Res 1984;17:144–51.Google Scholar
- 14.Hou JP, Poole JW. Beta-lactam antibiotics: their physicochemical properties and biological activities in relation to structure. J Pharm Sci 1971;60:503–32.PubMedGoogle Scholar
- 15.Yamana T, Tsuji A. Comparative stability of cephalosporins in aqueous solution: kinetics and mechanisms of degradation. J Pharm Sci 1976;65:1563–74.PubMedGoogle Scholar
- 16.Bundgaard H. Polymerization of penicillins. III: Structural effects influencing rate of dimerization of amino-penicillins in aqueous solution. Acta Pharm Suec 1977;14:67–80.PubMedGoogle Scholar
- 17.Nishikawa J, Tori K. 3-Substituent effect and 3-methylene substituent effect on the structure-reactivity relationship of 7-beta-(acylamino)-3-cephem-4-carboxylic acid derivatives studies by carbon-13 and IR spectroscopies. J Med Chem 1984;27:1657–63.PubMedGoogle Scholar
- 18.Indelicato JM, Norvilas TT, Pfeiffer RR, Wheeler WJ, Wilham WL. Substituent effects upon the base hydrolysis of penicillins and cephalosporins. Competitive intramolecular nucleophilic amino attack in cephalosporins. J Med Chem 1974;17:523–7.PubMedGoogle Scholar
- 19.Florey K, ed. Analytical Profiles of Drugs Substances. Vol. 1–14. New York: Academic Press, 1971–1985.Google Scholar
- 20.Morin RB, Jackson BG, Muller RA, Lavagnino ER, Scanlon WB, Andrews SL. Chemistry of cephalosporin antibiotics. xv. Transformation of penicillin sulfoxide. A synthesis of cephalosporin compounds. J Am Chem Soc 1969;91:1401–7.PubMedGoogle Scholar
- 21.Boyd DB. Substituent effects in cephalosporins as assessed by molecular orbital calculations, nuclear magnetic resonance and kinetics. J Med Chem 1983;26:1010–3.PubMedGoogle Scholar
- 22.Boyd DB. Electronic structures of cephalosporins and penicillins. 15. Inductive effect of the 3-position side chain in cephalosporins. J Med Chem 1984;27:63–6.PubMedGoogle Scholar
- 23.Coene B, Schanck A, Dereppe J-M, Van Meerssche M. Substituent effects on reactivity and spectral parameters of cephalosporins. J Med Chem 1984;27;694–700.PubMedGoogle Scholar
- 24.Levine BB. Degradation of benzylpenicillin at pH 7.5 tod-benzylpenicilloic acid. Nature 1960;186:939–40.Google Scholar
- 25.Grant NH. Penicillin polypeptides and their relevance to allergenicity. In: Weinstein B, Lande S, eds. Peptides: chemistry and biochemistry. New York: Marcel Dekker Inc., 1970:487–98.Google Scholar
- 26.Bundgaard H. Chemical studies related to cephalosporin allergy. 1. Kinetics of aminolysis of cephalosporins and effect of C-3 substituents on beta-lactam reactivity. Arch Pharm Chemi [Sci] 1975;3:94–123.Google Scholar
- 27.Nakashima E, Tsuji A, Nakamura M, Yamana T. Physicochemical properties of amphoteric beta-lactam antibiotics. IV. First- and second-order degradations of cefaclor and cefatrizine in aqueous solution and kinetic interpretation of the intestinal absorption and degradation of the concentrated antibiotics. Chem Pharm Bull (Tokyo) 1985;33:2098–106.Google Scholar
- 28.Boyd DB. Elucidating the leaving group effect in the beta-lactam ring opening mechanism of cephalosporins. J Org Chem 1985;50:886–8.Google Scholar
- 29.Bird AE, Redrup CE. Mercurimetric assay of penicillins. Proc Anal Div Chem Soc 1977;14:285–8.Google Scholar
- 30.Davis AM, Page MI. Opening of the thiazolidine ring of penicillin derivatives. J Chem Soc Chem Commun 1985:1702–4.Google Scholar
- 31.Ghebret-Sellassie I, Hem SL, Knevel AM. Epimerization of benzylpenicilloic acid in alkaline media. J Pharm Sci 1984;73:125–8.PubMedGoogle Scholar
- 32.Haginaka J, Wakai J. Epimerization of benzylpenicilloate in alkaline aqueous solutions. Chem Pharm Bull (Tokyo) 1985;33:2605–8.Google Scholar
- 33.Page MI, Proctor Ph. Mechanism of beta-lactam ring opening in cephalosporins. J Am Chem Soc 1984;106:3820–5.CrossRefGoogle Scholar
- 34.Bradshaw J, Eardley S, Long AG. Cephalosporanic acids. Part VI. Action of primary and secondary aromatic amines on cephalosporanic acids. J Chem Soc [C] 1968:801–6.Google Scholar
- 35.Indelicato JM, Wilham WL. Effect of 6-alpha substitution in penicillins and 7-alpha substitution in cephalosporins upon beta-lactam reactivity. J Med Chem 1974;17:528–9.CrossRefPubMedGoogle Scholar
- 36.Degelaen JP, Loukas SL, Feeney J, Roberts GCK, Burgen ASV. A nuclear magnetic resonance study of the degradation of penicillin G in acidic solution. J Chem Soc [Perkin] Trans II 1979:86–90.Google Scholar
- 37.Longridge JL. Penicillenic acid, the mechanism of the acid and base catalysed hydrolysis reactions. J Chem Soc [B] 1971:852–7.Google Scholar
- 38.Bontchev PR, Papazova P. Hydrolysis of cephalosporins in strongly acid medium. Pharmazie 1978;33:346–8.PubMedGoogle Scholar
- 39.Konecny J, Felber E, Gruner J. Kinetics of the hydrolysis of cephalosporin C. J Antibiot (Tokyo) 1973;26:135–41.Google Scholar
- 40.Fabre H, Hussam Eddine N, Berge G. Degradation kinetics in aqueous solution of cefotaxime sodium, a third-generation cephalosporin. J Pharm Sci 1984;73:611–8.PubMedGoogle Scholar
- 41.Barbhaiya RH, Turner P. Isolation and identification of the fluorescent degradation product of some betalactam antibiotics. J Pharm Pharmacol 1978;30:224–7.PubMedGoogle Scholar
- 42.Fogg AG, Fayad NM. Differential pulse polarographic study of the degradation of ampicillin. Anal Chim Acta 1980;113:91–6.CrossRefGoogle Scholar
- 43.Roets E, De Pourcq P, Toppet S, et al. Isolation and structure elucidation of ampicillin and amoxicillin oligomers. J Chromatogr 1984;303:117–29.CrossRefGoogle Scholar
- 44.Bundgaard H. Hydrolysis and intramolecular aminolysis of cephalexin and cephaloglycin in aqueous solution. Arch Pharm Chemi [Sci] 1976;4:25–43.Google Scholar
- 45.Bundgaard H. Chemical studies related to cephalosporin allergy. II. Competitive amine-catalyzed intra- and intermolecular aminolysis of cephalexin and cephaloglycin in aqueous solution. Acta Pharm Suec 1976;13:299–312.PubMedGoogle Scholar
- 46.Tsuji A, Nakashima E, Deguchi Y, et al. Degradation kinetics and mechanism of aminocephalosporins in aqueous solution: cefadroxil. J Pharm Sci 1981;70:1120–8.PubMedGoogle Scholar
- 47.Bundgaard H. Isolation and characterization of cephalexin degradation products formed in neutral aqueous solution. Arch Pharm Chemi [Sci] 1977;5:149–56.Google Scholar
- 48.Cohen AI, Funke PT, Puar MS. Alkaline degradation product of cephradine. J Pharm Sci 1973;62:1559–61.PubMedGoogle Scholar
- 49.Dinner A. Cephalosporin degradations. J Med Chem 1977;20:963–5.CrossRefPubMedGoogle Scholar
- 50.Fogg AG, Fayad NM, Burgess C. Differential pulse polarographic study of the degradation of cephalexin. Anal Chim Acta 1979;110:107–15.CrossRefGoogle Scholar
- 51.Fogg AG, Martin MJ. Differential pulse polarographic determination of degradation products of cephalosporins: comparison of the degradation of cephaloglycin in neutral solution with that of cephalexin. Analyst 1981;106:1213–7.CrossRefGoogle Scholar
- 52.Bundgaard H. Polymerization of penicillins: kinetics and mechanism of di- and polymerization of ampicillin in aqueous solution. Acta Pharm Suec 1976;13:9–26.PubMedGoogle Scholar
- 53.Bundgaard H. Polymerization of penicillins. II: Kinetics and mechanism of dimerization and self-catalyzed hydrolysis of amoxycillin in aqueous solution. Acta Pharm Suec 1977;14:47–66.PubMedGoogle Scholar
- 54.Takagi S, Nobuhara Y, Nakanishi Y. Formation of penicillin polymers and determination of molecular weight. J Chromatogr 1983;258:262–6.CrossRefGoogle Scholar
- 55.Ueno H, Nishikawa M, Muranka M, Horiuchi Y. High-speed gel filtration chromatography of polymers formed by beta-lactam antibiotics. J Chromatogr 1981;207:425–9.CrossRefGoogle Scholar
- 56.Kuchinskas EJ, Levy GN. Comparative stabilities of ampicillin and hetacillin in aqueous solution. J Pharm Sci 1977;61:727–9.Google Scholar
- 57.Tsuji A, Nakashima E, Nishide K, Deguchi Y, Hamano S, Yamana T. Physicochemical properties of amphoteric beta-lactam antibiotics. III. Stability, solubility and dissolution behaviour of cefatrizine and cefadroxil as a function of pH. Chem Pharm Bull (Tokyo) 1983;31:4057–69.Google Scholar
- 58.Yamana T, Tsuji A, Kanayama K, Nakano O. Comparative stabilities of cephalosporins in aqueous solutions. J Antibiot (Tokyo) 1974:27:1000–2.Google Scholar
- 59.Fujita T, Koshiro A. Kinetics and mechanism of the degradation and epimerization of sodium cefsulodin in aqueous solution. Chem Pharm Bull (Tokyo) 1984;32:3651–61.Google Scholar
- 60.Hashimoto N, Tasaki T, Tanaka H. Degradation and epimerization kinetics of moxalactam in aqueous solution. J Pharm Sci 1984:73:369–73.PubMedGoogle Scholar
- 61.Kaneniwa N, Otsuka M. The interaction between water and cephalexin in the crystalline and noncrystalline states. Chem Pharm Bull (Tokyo) 1984;32:4551–9.Google Scholar
- 62.Attwood D, Agarwal SP. Light scattering studies on micelle formation by some penicillins in aqueous solution. J Pharm Pharmacol 1984;36:563–4.PubMedGoogle Scholar
- 63.Jusko WJ. Fluorimetric analysis of ampicillin in biological fluids. J Pharm Sci 1971;60:728–32.PubMedGoogle Scholar
- 64.Yu ABC, Nightingale CH, Flanagan DR. Rapid sensitive fluorimetric analysis of cephalosporin antibiotics. J Pharm Sci 1977;66:213–6.PubMedGoogle Scholar
- 65.Kusnir J, Barna K. Fluorimetric determination of some basic antibiotics at very low concentrations. Z Anal Chem 1974;271:288.CrossRefGoogle Scholar
- 66.Baker WL. Application of the fluorescamine reaction with 6-aminopenicillanic acid to estimation and detection of penicillin acylase activity. Antimicrob Agents Chemother 1983;23:26–30.PubMedGoogle Scholar
- 67.Baker WL. A sensitive enzymic assay for benzylpenicillin. J Appl Bacteriol 1985:59:347–52.PubMedGoogle Scholar
- 68.Mori I, Fujita Y, Fujita K, et al. Determination of penicillins with mercurochrome. Chem Pharm Bull (Tokyo) 1985;33:4629–32.Google Scholar
- 69.Briguglio GT, Lau-Cam CA. Separation and identification of nine penicillins by reversed phase liquid chromatography. J Assoc Off Anal Chem 1984:67:228–31.PubMedGoogle Scholar
- 70.Smith JWG, De Grey GE, Patel VJ. The spectrophotometric determination of ampicillin. Analyst 1967;92:247–52.CrossRefPubMedGoogle Scholar
- 71.Anonymous. British Pharmacopoeia 1973. London: Her Majesty's Stationery Office, 1973.Google Scholar
- 72.Bundgaard H, Ilver K. A new spectrophotometric method for the determination of penicillins. J Pharm Pharmacol 1972:24:7904.Google Scholar
- 73.Bundgaard H. Spectrophotometric determination of ampicillin sodium in the presence of its degradation and polymerization products. J Pharm Pharmacol 1974;26:385–92.PubMedGoogle Scholar
- 74.Tutt DE, Schwartz MA. Spectrophotometric assay of ampicillin-involving initial benzoylation of the side chain alpha-aminogroup. Anal Chem 1971:43:338–42.CrossRefPubMedGoogle Scholar
- 75.Haginaka J, Wakai J, Yasuda H, Uno T. Spectrophotometric assay of penicillins by reaction with 1,2,4-triazole and mercury(II) chloride. Anal Sci 1985;1:73–6.Google Scholar
- 76.Buur A, Bundgaard H. A specific spectrophotometric assay for ampicillins and other aminopenicillins based on zinc ion-catalyzed reactions with aminoalcohols. Arch Pharm Chemi [Sci] 1983:11:91–9.Google Scholar
- 77.Holl WW, O'Brien M, Filan J, et al. Automated spectrophotometric assay of cephazolin. J Pharm Sci 1975;64:1232–4.PubMedGoogle Scholar
- 78.Papazova P, Bontchev PR, Kacarova M. New spectrophotometric method for determination of cephazolin. Talanta 1983:30:51–3.CrossRefGoogle Scholar
- 79.Rogic D, Mandic Z. Spectrophotometric determination of cephalexin. Acta Pharm Jugosl 1984;34:51–7.Google Scholar
- 80.Ford JH. Hydroxylamine method for determining penicillins. Anal Chem 1947;19:1004–6.CrossRefGoogle Scholar
- 81.Boxer GE, Everett PM. Colorimetric determination of benzylpenicillin. Anal Chem 1949;21:670–3.CrossRefGoogle Scholar
- 82.Niedermayer AO, Russo-Alesi FM, Lendzian CA, Kelly JM. Automated system for continuous determination of penicillin in fermentation media using hydroxylamine reagent. Anal Chem 1960;32:664–6.CrossRefGoogle Scholar
- 83.Bass VC, Yoe JH. Hydroxamic acids as colorimetric reagents. Talanta 1966:13:735–44.CrossRefGoogle Scholar
- 84.Notari RE, Munson JW. Hydroxamic acids. I: factors affecting the stability of the hydroxamic acid-iron complex. J Pharm Sci 1969;58:1060–4.PubMedGoogle Scholar
- 85.Kulo AE. Automated system for determination of cephalosporins and penicillins using hydroxylamine reagent. Farm Notisbl 1976;1:1–7.Google Scholar
- 86.Mays DL, Bangert FK, Cantrell WC, Evans WG. Hydroxylamine determination of cephalosporins. Anal Chem 1975;47:2229–34.CrossRefPubMedGoogle Scholar
- 87.Zinner G, Ketz EU. über die Farbreaktion von HydroxamsÄuren mit Eisen(III)-chlorid. Pharm Ztg 1976;121:910–1.Google Scholar
- 88.Le Moigne B, Barthes D, Fourtillan JB, Hazane C. La réaction de formation des hydroxamates ferriques. Adaptation autoanalytique appliquée à l'étude des bèta-lactamines et bèta-lactamases. Ann Pharm Fr 1978;36:381–90.PubMedGoogle Scholar
- 89.Lin S-L, Sutton VJ, Quraishi M. Equivalence of microbiological and hydroxylamine methods of analysis for ampicillin dosage forms. J Assoc Off Anal Chem 1979;62:989–97.PubMedGoogle Scholar
- 90.Bartos J. Colorimetric determination of organic compounds by formation of hydroxamic acids. Talanta 1980;27:583–90.CrossRefGoogle Scholar
- 91.Munson JW, Papadimitriou P, DeLuca PP. Colorimetric determination of penicillins and related compoundsinintravenoussolutionbynickel(II)-catalyzedhydroxamic acid formation. J Pharm Sci 1979;68:1333–5.PubMedGoogle Scholar
- 92.Anonymous. Nederlandse Farmacopee. Ed. IX. 's-Gravenhage: Staatsuitgeverij, 1983.Google Scholar
- 93.Anonymous. European Pharmacopoeia, 2nd ed. Sainte-Ruffine: Maisonneuve S.A., 1980.Google Scholar
- 94.Anonymous. British Pharmacopoeia 1980. Vol. I and II. London: Her Majesty's Stationery Office, 1980.Google Scholar
- 95.Anonymous. The United States Pharmacopeia. 21st Revision and Supplements 1–3. Rockville: United States Pharmacopeial Convention Inc., 1984.Google Scholar
- 96.Heintz B, Kruger M. Beta-lactam Antibiotika: Quecksilbertitration oder Hydroxamatmethode? Dtsch Apoth Ztg 1985;125:2594–602.Google Scholar
- 97.Thimme Gowda A, Made Gowda NM, Sanke Gowda H, Rangappa KS. Application of Azure C for the extractive spectrophotometric determination of microgram amounts of penicillin. J Pharmacol Methods 1985;13:275–80.CrossRefPubMedGoogle Scholar
- 98.Singh MP, Basu N, Roy DK, Mandal SK. A colorimetric method for quick identification and estimation of penicillins. Indian J Exp Biol 1984;22:39–41.PubMedGoogle Scholar
- 99.Amer MM, El Bardicy MG, Rucker G. Penicillins — a photometric method for their determination. Krankenhauspharmazie 1983;4:255–7 [from Chem Abstr 1983;99:2000583y].Google Scholar
- 100.Kirschbaum J. Colorimetric determination of cephradine, a cephalosporin antibiotic. J Pharm Sci 1974;63:923–5.Google Scholar
- 101.Abdalla MA, Fogg AG, Burgess C. Selective spectrophotometric determination of cephalosporins by alkaline degradation to hydrogen sulphide and formation of methylene blue. Analyst 1982;107:213–7.CrossRefGoogle Scholar
- 102.Abdalla MA, Fogg AG, Baber JG, Burgess C. Airsegmented continuous-flow visible spectrophotometric determination of cephalosporins in drug formulations by alkaline degradation to hydrogen sulphide and formation of methylene blue and determination of sulphide-producing impurities including cephalosporins in penicillins samples. Analyst 1983;108:53–7.CrossRefPubMedGoogle Scholar
- 103.Marini D. Alkaline hydrolysis of cefadroxil and sodium cefotaxime and their spectrophotometric determination by methylene blue formation. Boll Chim Farm 1982;121:658–64 [from Chem Abstr 1983;99:10938V].Google Scholar
- 104.Abdel-Khalek MM, Mahrous MS. Use of ammonium molybdate in the colorimetric assay of cephalosporins. Talanta 1984;31:635–7.CrossRefGoogle Scholar
- 105.Abdel-Khalek MM, Mahrous MS. Spectrophotometric determination of tetracyclines and cephalosporins with ammonium vanadate. Talanta 1983;30:792–4.CrossRefGoogle Scholar
- 106.Fogg AG, Abdalla MA. Visible spectrophotometric determination of cephalosporins and penicillins by indophenol derivatization with and without alkaline degradation to ammonia. J Pharm Biomed Anal 1985;3:315–21.CrossRefGoogle Scholar
- 107.Papazova P, Bontchev PR, Kacarova M. Photometric extraction method for determination of cephalexin. Mikrochimica Acta 1976;(II): 185–94.CrossRefGoogle Scholar
- 108.Papazova P, Bontchev PR, Kacarova M. Photometric extraction method for determination of cephalothin. Pharmazie 1977;32:486–8.PubMedGoogle Scholar
- 109.Mahrous MS, Abdel-Khalek MM. Spectrophotometric determination of certain cephalosporins with ninhydrin. Analyst 1984;119:611–3.CrossRefGoogle Scholar
- 110.Hughes DW, Vilim A, Wilson WL. Chemical and physical analysis of antibiotics. Part II. Can J Pharm Sci 1976;11:97–108.Google Scholar
- 111.Ibrahim SE. Application of NMR spectrometry in quantitative analysis of cloxacillin in some pharmaceutical preparations. Spectrosc Lett 1985;18:267–72 [from Anal Abstr 1986;48:168,2E23].Google Scholar
- 112.Thorpe CW, Johnson RL. Analysis of penicillic acid by GLC. J Assoc Off Anal Chem 1974;57:861–5.PubMedGoogle Scholar
- 113.Fujimoto Y, Suzuki T, Hoshino Y. Determination of penicillic acid and patulin by gas-liquid chromatography with an electron-capture detector. J Chromatogr 1975;105:99–106.CrossRefPubMedGoogle Scholar
- 114.Jacobs GP. Gamma-radiolysis of sodium ampicillin and its esters. Int J Appl Radiat Isot 1984;35:1023–7.CrossRefGoogle Scholar
- 115.Aboul Khier A, Blaschke G, EI Sadek M. Spectrodensitometric determination of some penicillin derivatives. Anal Lett 1984;17:1667–75.Google Scholar
- 116.Sykes RB, Wells JS. Screening for beta-lactam antibiotics in nature. J Antibiot (Tokyo) 1985;38:119–21.Google Scholar
- 117.Hendrickx S, Roets E, Hoogmartens J, Vanderhaeghe H. Identification of penicillins by TLC. J Chromatogr 1984;291:211–8.CrossRefGoogle Scholar
- 118.Fabre H, Blanchin M-D, Lerner D, Mandrou B. Determination of cephalosporins utilising thin-layer chromatography with fluorescamine detection. Analyst 1985;110:775–8.CrossRefPubMedGoogle Scholar
- 119.Tortolani G, Mazza M. The chromatography of antibiotics on SP-Sephadex. J Chromatogr 1973;86:139–44.CrossRefPubMedGoogle Scholar
- 120.Tortolani G, Romagnoli E. Chromatography of cephalosporins on DEAE-Sephadex. J Chromatogr 1976;120:149–53.CrossRefPubMedGoogle Scholar
- 121.Gehle RD, Schugerl K. Penicillin recovery from aqueous solutions by continuous foam flotation. Appl Microbiol Biotechnol 1984;19:373–5.CrossRefGoogle Scholar
- 122.Miners JO. The analysis of penicillins in biological fluids and pharmaceutical preparations by high-performance liquid chromatography: a review. J Liq Chromatogr 1985;8:2827–43.Google Scholar
- 123.Matlin SA, Chan L. Preparative HPLC. Part 2. Purification of beta-lactam derivatives using laboratory-assembled equipment. J High Res Chrom Chrom Commun 1985;8:23–7.CrossRefGoogle Scholar
- 124.Cantwell AM, Calderone R, Sienko M. Process scale-up of a beta-lactam antibiotic purification by highperformance liquid chromatography. J Chromatogr 1984;316:133–49.CrossRefGoogle Scholar
- 125.Lauback RG, Rice JJ, Bleiberg B, Muhammad N, Hanna SA. Specific high-performance liquid Chromatographic determination of ampicillin in bulks, injectables, capsules and oral suspensions by RP-ion pair chromatography. J Liq Chromatogr 1984;7:1243–65.Google Scholar
- 126.Knox JH, Jurand J. Mechanism of zwitterion pair chromatography. Part II. Ampicillin, lysergic acid, tryptophan and other solutes. J Chromatogr 1981;218:355–63.CrossRefGoogle Scholar
- 127.Fong GWK, Martin DT, Johnson RN, Kho BT. Determination of degradation products and impurities of amoxicillin capsules using ternary gradient elution HPLC. J Chromatogr 1984;298:459–72.CrossRefPubMedGoogle Scholar
- 128.De Pourcq P, Hoebus J, Roets E, Hoogmartens J, Vanderhaeghe H. Quantitative determination of amoxicillin and its decomposition products by high-performance liquid chromatography. J Chromatogr 1985;321:441–9.CrossRefPubMedGoogle Scholar
- 129.Haginaka J, Wakai J. Liquid Chromatographic determination of penicillins by postcolumn alkaline degradation. Anal Chem 1985;57:1568–71.CrossRefPubMedGoogle Scholar
- 130.Haginaka J, Wakai J. Liquid Chromatographic determination of penicillins by postcolumn degradation with sodium hypochlorite. Anal Chem 1986;58:1896–8.CrossRefPubMedGoogle Scholar
- 131.Brooks MA, Hackman MR, Mazzo DJ. Determination of amoxicillin by high-performance liquid chromatography with amperometric detection. J Chromatogr 1981:210:531–5.CrossRefGoogle Scholar
- 132.Rogers ME, Adlard MW, Saunders G, Holt G. Derivatization techniques for HPLC-analysis of betalactams. J Chromatogr 1984:297:385–91.CrossRefGoogle Scholar
- 133.Aboul Khier A, Blaschke G, El Sadek M. Determination of some penicillin derivatives using high performance liquid chromatography. Anal Lett 1984;17:1659–66.Google Scholar
- 134.Rogers ME, Adlard MW, Saunders G, Holt G. Highperformance liquid Chromatographic determination of penicillins following derivatization to mercury-stabilized penicillenic acids. J Liq Chromatogr 1983:6:2019–31.Google Scholar
- 135.Das Gupta V, Shah KA, De la Torre M. Stability of ampicillin sodium and penicillin G potassium solutions using high-pressure liquid chromatography. Can J Pharm Sci 1981:16:615 [from Chem Abstr 1981; 96:129678p].Google Scholar
- 136.Crombez E, Van den Bossche W, De Moerloose P. Separation of some cephalosporin derivatives by ion-pair RP-HPLC. J Chromatogr 1979;169:343–50.CrossRefPubMedGoogle Scholar
- 137.Elrod Jr. L, White LB, Wimer DC, Cox RD. Determination of cefsulodin sodium [d(−)-SCE 129] by HPLC. J Chromatogr 1982;237:515–21.CrossRefGoogle Scholar
- 135.Wouters I, Hendrickx S, Roets E, Hoogmartens J, Vanderhaeghe H. Selectivity of reversed-phase packing materials in HPLC of cephalosporins. J Chromatogr 1984;291:59–80.CrossRefGoogle Scholar
- 139.Nygard G, Wahba Khalil SK. An isocratic HPLC method for the determination of cephalosporins in plasma. J Liq Chromatogr 1984:7:1461–75.Google Scholar
- 140.Rogers ME, Adlard MW, Saunders G, Holt G. HPLC determination of beta-lactam antibiotics, using fluorescence detection following post-column derivatization. J Chromatogr 1983:257:91–100.CrossRefGoogle Scholar
- 141.Siegerman H. Polarography of antibiotics and antibacterial agents. In: Bard AJ, ed. Electroanalytical Chemistry. Vol. II. New York: Marcel Dekker Inc., 1979:291–343.Google Scholar
- 142.Selavka CM, Krull IS, Bratin K. Analysis for penicillins and cefoperazone by HPLC-photolysis-electrochemical detection (HPLC-hv-EC). J Pharm Biomed Anal 1986;4:83–93.CrossRefGoogle Scholar
- 143.Alicino JF. Iodometric method for the assay of penicillin preparations. Ind Eng Chem Anal Ed 1946:18:619–20.CrossRefGoogle Scholar
- 144.Körbl J. Merkurimetrische Bestimmung der natürlichen und halbsynthetischen Penicilline und einiger ihrer Degradationsprodukte [Abstract]. Congress Fédération Internationale Pharmaceutique, Stockholm, 3–8 September 1973.Google Scholar
- 145.Paál T, Molnar M. Selective determination of the penicillin-structure by the mercurimetric method. Gyogyszereszet 1976;20:8–13.Google Scholar
- 146.Forsman U, Karlberg B. Titration of 6-APA with mercury(II) solution. Anal Chim Acta 1976;86:87–91.CrossRefPubMedGoogle Scholar
- 147.Karlberg B, Forsman U. The determination of penicillins by titrations with mercury(II) solution. Anal Chim Acta 1976;83:309–16.CrossRefPubMedGoogle Scholar
- 148.Bird AE, Redrup CE. Mercurimetric assay of penicillins. Proc Anal Div Chem Soc 1977;14:285–8.CrossRefGoogle Scholar
- 149.Pospisilova B, Simkova M, Kubes J. Mercurimetric determination of penicillins. II. Titration of natural and synthetic penicillins in acetate buffer medium. Cesk Farm 1985;34:56–61.Google Scholar
- 150.Kószegi-Szalai H, Paál T, Juhasz-Fázekas E. A novel version and the reaction mechanism of the mercurimetric determination of penicillins. Acta Pharm Hung 1985;55:266–76 [from Chem Abstr 1986;104:56504a].PubMedGoogle Scholar
- 151.Doskocil J, Parizkova H. Conductometrische Titration des Penicillins. Pharmazie 1956:11:732–5.PubMedGoogle Scholar
- 152.Dobiasovsky J, Zyka J. Analytical studies of argentometric determination of penicillin. I. Cesk Farm 1978;27:253–7 [from Electroanal Abstr 1979;17:1328].PubMedGoogle Scholar
- 153.Dobiasovsky J, Zyka J. Analytical studies of argentometric determination of penicillin. II. Explanation of the course of the potentiometric titration curve. Cesk Farm 1978;27:293–6 [from Electroanal Abstr 1979; 17:1329].PubMedGoogle Scholar
- 154.Grime JK, Tan B. Direct titration of antibiotics with iodate solution. Part I: titration of some selected penicillins. Anal Chim Acta 1979;105:361–8.CrossRefGoogle Scholar
- 155.Alicino JF.N-Bromosuccinimide assay of penicillins and cephalosporins. J Pharm Sci 1976;65:300–1.PubMedGoogle Scholar
- 156.Rizk M, Walash MI, Abou-Ouf AA, Belal F. Evaluation of certain Pharmaceuticals with dibromohydantoin. Part v: Determination of penicillins. Anal Lett [B] 1981;14:1407–17.Google Scholar
- 157.Sikorska-Tomicka H. Titrimetric determination of thiolactams with ceric sulphate. Chemia Analityczna 1984;29:93–6.Google Scholar
- 158.Hassan SM, Zaki MTM, Eldesouki MH. Determination of penicillins by desulphurization with lead and EDTA titration. Talanta 1979;26:91–5.CrossRefGoogle Scholar
- 159.Okada S, Hattori K, Takano T. An iodometric assay of some derivatives of 7-aminocephalosporanic acid. Bull Chem Soc Jpn 1965;38:2186–7.PubMedGoogle Scholar
- 160.Frantz BM. Iodometric and spectrophotometric assays for cephradine after its hydrolysis with a beta-lactamase. J Pharm Sci 1976;65:887–91.PubMedGoogle Scholar
- 161.Körbl J, Pospisilova B. Mercurimetric determination of cephalosporins. Cesk Farm 1983;32:6–11.PubMedGoogle Scholar
- 162.Grime JK, Tan B. Direct titration of antibiotics with íodate solution. Part II: Some selected cephalosporins. Anal Chim Acta 1979;105:369–74.CrossRefGoogle Scholar
- 163.Fogg AG, Abdalla MA, Henriques HP. Titrimetric determination of the yield of sulphide formed by alkaline degradation of cephalosporins. Analyst 1982;107:449–52.CrossRefGoogle Scholar
- 164.Jemal M, Knevel AM. Polarographic behaviour of benzylpenicillenic acid. Anal Chem 1978;50:1917–20.CrossRefGoogle Scholar
- 165.Forsman U, Karlsson A. Direct current and differential pulse polarographic behaviour of benzylpenicilloic acid. Anal Chim Acta 1981;128:135–9.CrossRefGoogle Scholar
- 166.Forsman U, Karlsson A. Polarographic determination of penicilloic acid in penicillin preparations with a flow-injection system. Anal Chim Acta 1982;139:133–42.CrossRefGoogle Scholar
- 167.Squella JA, Nunez-Vergara LJ. Polarographic determination of ampicillin in capsules and tablets. Talanta 1979;26:1039–40.CrossRefGoogle Scholar
- 168.Squella JA, Nunez-Vergara LJ, Aros M. DC Polarographic and spectrophotometric determination of ampicillin capsules. J Assoc off Anal Chem 1980;63:1049–51.PubMedGoogle Scholar
- 169.Nunez-Vergara LJ, Daza R, Zanocco A, Squella JA. An electroactive metabolite from amoxycillin. Bioelectrochem Bioenerg 1983;11:417–24.CrossRefGoogle Scholar
- 170.Squella JA, Nunez-Vergara LJ. Anodic polarographic behaviour of hydrolyzed penicillin V. Anal Lett 1982:15:1505–13.Google Scholar
- 171.Squella JA, Silva MM, Nunez-Vergara LJ. Anodic polarographic determination of flucloxacillin. Talanta 1981;28:855–6.CrossRefGoogle Scholar
- 172.Rizk M, Walash MI, Abou-Ouf AA, Belal F. Polarographic behaviour and determination of penicillins after bromometric oxidation. Pharm Weekbl [Sci] 1984;6:114–7.Google Scholar
- 173.Squella JA, Nunez-Vergara LJ. Electrochemical study of some penicillin antibiotics by rapid AC polarography. J Electroanal Chem 1981;130:361–6.CrossRefGoogle Scholar
- 174.Forsman U. Cathodic stripping voltammetric determination of trace amount of penicillins. Anal Chim Acta 1983;146:71–86.CrossRefGoogle Scholar
- 175.Dusinsky G, Antolik P. Oscillographic polarography as a method for continuous measurements of inactivation of penicillins by penicillinase. Nature 1965;206:196–7.PubMedGoogle Scholar
- 176.Forsman U. Coulometric titration of penicillins and penicillamine with mercury(II). Anal Chim Acta 1977;93:153–9.CrossRefPubMedGoogle Scholar
- 177.Papariello GJ, Mukherji AK, Shearer CM. A penicillin selective electrode. Anal Chem 1973;45:790–2.CrossRefPubMedGoogle Scholar
- 178.Caras S, Janata J. Field effect transistor sensitive to penicillin. Anal.Chem 1980;52:1935–7.CrossRefGoogle Scholar
- 179.Caras SD, Janata J. pH-Based enzyme potentiometric sensors. Part 3. Penicillin-sensitive field effect transistors. Anal Chem 1985;17:1924–5.CrossRefGoogle Scholar
- 180.Kulys J, Gureviciene V, Laurinavicius V. Analytical systems based on immobilized enzymes. II. Penicillin enzyme electrodes. Liet TSR Mokslu Akad Darb [C] 1981:171–8 [from Anal Abstr 1982;43:4J119].Google Scholar
- 181.Jones IF, Page JE, Rhodes CT. The polarography of cephalosporin C derivatives. J Pharm Pharmacol 1968;20:45S-7S.PubMedGoogle Scholar
- 182.Hall DA. Polarography of cephalosporin C derivatives. 1: 3-(5-methyl-1,3,4-thiadiazol-2-ylthiomethyl)-7-[2-(3-sydnone)-acetamido]-3-cephem-4-carboxylic acid, sodium salt. J Pharm Sci 1973;62:980–3.PubMedGoogle Scholar
- 183.Hall DA, Berry DM, Schneider CJ. The electrochemistry of cephalosporin C derivatives. Part II: Cephalothin, sodium salt. J Electroanal Chem 1977;80:155–70.CrossRefGoogle Scholar
- 184.Ochiai M, Aki O, Morimoto A, Okada T, Shinozaki K, Asahi Y. Electrochemical reduction of cephalosporanic acids. J Chem Soc [Perkin] I 1974:258–62.CrossRefGoogle Scholar
- 185.Fogg AG, Fayad NM, Burgess C, McGlynn A. Differential pulse polarographic determination of cephalosporins and their degradation products. Anal Chim Acta 1979;108:205–11.CrossRefGoogle Scholar
- 186.Rickard EC, Cooke GC. Electrochemical analysis of the cephalosporin cefamandole nafate. J Pharm Sci 1977:66:379–84.PubMedGoogle Scholar
- 187.Sengun FI, Gurkan T, Fedai I, Sungur S. Analytical investigations of cephalosporins. Part 9. Polarographic behaviour of some selected cephalosporins and assay of their-formulations. Analyst 1985;110:1111–5.CrossRefPubMedGoogle Scholar
- 188.Ivaska A, Nordstrom F. Determination of some cephalosporins by differential pulse polarography and linear scan voltammetry. Anal Chim Acta 1983;146:87–91.CrossRefGoogle Scholar
- 189.Fogg AG, Fayad NM. D.p.p. of cephalosporins and their degradation products. In: Smyth WF, ed. Proceedings Electroanalysis in Hygiene, Environmental, Clinical and Pharmaceutical Chemistry. Amsterdam: Elsevier Scientific Publishers BV, 1980:233–43. (Analytical Chemistry Symposia Series. Vol. 2.)Google Scholar
- 190.Squella JA, Nunez-Vergara LJ, Gonzalez EM. Polarographic analysis of cephalexin. J Pharm Sci 1978;67:1466–7.PubMedGoogle Scholar
- 191.Fogg AG, Fayad NM, Goyal RN. Differential pulse polarographic determination of cephalexin after hydrolysis in neutral phosphate buffer. J Pharm Pharmacol 1980;32:302–3.PubMedGoogle Scholar
- 192.Nunez-Vergara LJ, Squella JA, Gonzalez EM. DC Polarography of cephradine and its application to capsules. J Assoc off Anal Chem 1979;62:556–9.PubMedGoogle Scholar
- 193.Squella JA, Nunez-Vergara LJ. Cathodic and anodic electroactive product from acidic cleavage of cephradine. Anal Lett 1984;17:1343–51.Google Scholar
- 194.Anonymous. Melkbesluit (Milk Decree). In: Bleys HTM, ed. Warenwetgeving (Food and Drugs Act). 22nd ed. Zwolle: WEJ Tjeenk Willink, 1984. (Editie Schuurman & Jordens. Part 99–1.)Google Scholar
- 195.Miner DJ. Antibiotics. In: Wong SHY, ed. Therapeutic Drug Monitoring and Toxicology by Liquid Chromatography. New York: Marcel Dekker Inc., 1985:269–307. (Chromatographic Science Series. Vol. 32.)Google Scholar
- 196.Miyazaki K, Ohtani K, Sunada K, Arita T. Determination of ampicillin, amoxicillin, cephalexin, and cephradine in plasma by HPLC using fluorimetric detection. J Chromatogr 1983;276:478–82.PubMedGoogle Scholar
- 197.Lee TL, Brooks MA. High-performance liquid chromatographic determination of amoxicillin in human plasma using a bonded-phase extraction. J Chromatogr 1984;306:429–35.PubMedGoogle Scholar
- 198.Carlqvist J, Westerlund D. Automated determination of amoxycillin in biological fluids by column switching in ion-pair reversed phase liquid Chromatographic systems with post-column derivatization. J Chromatogr 1985;344:285–96.PubMedGoogle Scholar
- 199.Haginaka J, Wakai J. High-performance liquid chromatographic assay of ampicillin, amoxicillin and ciclacillin in serum and urine using pre-column reaction with 1,2,4-triazole and mercury(II) chloride. Analyst 1985;110:1277–81.CrossRefPubMedGoogle Scholar
- 200.Terada H, Sakabe Y. Studies on residual antibacterials in foods, IV. Simultaneous determination of penicillin G, penicillin V and ampicillin in milk by highperformance liquid chromatography. J Chromatogr 1985;348:379–87.CrossRefPubMedGoogle Scholar
- 201.Kok WT, Halvax JJ, Voogt WH, Brinkman UAT, Frei RW. Detection of thioethers of pharmaceutical importance by liquid chromatography with on-line generated bromine. Anal Chem 1985;57:2580–3.CrossRefPubMedGoogle Scholar
- 202.Demotes-Mainard FM, Vincon GA, Jarry CH, Bourgeois GL, Albin HC. High-performance liquid Chromatographic determination of apalcillin in plasma and yrine. J Chromatogr 1985;342:234–40.PubMedGoogle Scholar
- 203.Moats WA. Determination of penicillin G and cloxacillin residues in beef and pork tissue by HPLC. J Chromatogr 1984;317:311–8.CrossRefPubMedGoogle Scholar
- 204.Terada H, Asanoma M, Sakabe Y. Studies on residual antibacterials in foods. III. High-performance liquid Chromatographic determination of penicillin G in animal tissues using an on-line pre-column concentration and purification system. J Chromatogr 1985;318:299–306.CrossRefPubMedGoogle Scholar
- 205.Rumble RH, Roberts MS. Determination of benzylpenicillin in plasma and urine by high-performance liquid chromatography. J Chromatogr 1985;342:436–41.PubMedGoogle Scholar
- 206.Munns RK, Shimoda W, Roybal JE, Vieira C. Multiresidue method for determination of eight neutral Β-lactam penicillins in milk by fluorescence-liquid chromatography. J Assoc off Anal Chem 1985, 65:968–71.Google Scholar
- 207.Moats WA. Determination of penicillin G, penicillin V and cloxacillin in milk by reversed-phase high-performance liquid chromatography. J Agric Food Chem 1983;31:880–3.CrossRefGoogle Scholar
- 208.Haginaka J, Wakai J. High-performance liquid Chromatographic assay of carbenicillin, ticarcillin and sulbenicillin in serum and urine using pre-column reaction with 1,2,4-triazole and mercury(II)chloride. Analyst 1985;110:1185–8.CrossRefPubMedGoogle Scholar
- 209.Lindberg RLP, Huupponen RK, Huovinen P. Rapid high-pressure liquid Chromatographic method for analysis of phenoxymethylpenicillin in human serum. Antimicrob Agents Chemother 1984;26:300–2.PubMedGoogle Scholar
- 210.Watson ID. Clavulanate-potentiated ticarcillin: highperformance liquid Chromatographic assays for clavulanic acid and ticarcillin in serum and urine. J Chromatogr 1985;337:301–9.PubMedGoogle Scholar
- 211.Nygard G, Khalil SKW. An isocratic HPLC method for the determination of cephalosporins in plasma. J Liq Chromatogr 1984;7:1461–75.Google Scholar
- 212.Reitberg DP, Schentag JJ. Liquid-chromatographic assay of cefmenoxim in serum and urine. Clin Chem 1983;29:1415–8.PubMedGoogle Scholar
- 213.Nishihata T, Takahagi H, Yamamoto M, Tomida H, Rytting JH, Higuchi T. Enhanced rectal absorption of cefmetazole and cefoxitin in the presence of epinephrine metabolites in rat and a high-performance liquid Chromatographic assay for cephamycin antibiotics. J Pharm Sci 1984:73:109–12.PubMedGoogle Scholar
- 214.Brendel E, Zschunke M, Meineke L. High-performance liquid Chromatographic determination of cefonicid in human plasma and urine. J Chromatogr 1985;339:359–65.PubMedGoogle Scholar
- 215.Dokladalova J, Quercia GT, Stankewich JP. High-performance liquid Chromatographic determination of cefoperazone in human serum and urine. J Chromatogr 1983;276:129–37.PubMedGoogle Scholar
- 216.Demotes-Mainard FM, Vincon GA, Jarry CH, Albin HC. Micromethod for the determination of cefotaxime and desacetylcefotaxime in plasma and urine by high-performance liquid chromatography. J Chromatogr 1984;336:439–45.Google Scholar
- 217.Kees F, Grobecker H, Naber KG. High-performance liquid Chromatographic analysis of cefotetan epimers in human plasma and urine. J Chromatogr 1984;305:363–71.PubMedGoogle Scholar
- 218.Charles BG, Ravenscroft PJ. Rapid HPLC analysis of cefoxitin in plasma and urine. J Antimicrob Chemother 1984;13:291–4.PubMedGoogle Scholar
- 219.Lakings DB, Wozniak JM. High-performance liquid Chromatographic methods for the determination of cefpimizole in plasma and urine. J Chromatogr 1984;308:261–71.PubMedGoogle Scholar
- 220.Hwang PTR, Drexler PG, Meyer MC. High-performance liquid Chromatographic determination of ceftazidime in serum, urine, CSF and peritoneal dialysis fluid. J Liq Chromatogr 1984;7:720–4.Google Scholar
- 221.Leeder JS, Spino M, Tesoro AM, MacLeod SM. HPLC analysis of ceftazidime in serum and urine. Antimicrob Agents Chemother 1983;24:720–4.PubMedGoogle Scholar
- 222.Myers CM, Blumer JL. Determination of ceftazidime in biological fluids by using HPLC. Antimicrob Agents Chemother 1983;24:343–6.PubMedGoogle Scholar
- 223.LeBel M, Ericson JF, Pitkin DH. Improved high-performance liquid Chromatographic (HPLC) assay method for ceftizoxime. J Liq Chromatogr 1984;7:961–8.Google Scholar
- 224.Ascalone V, Dalbo L. Determination of ceftriaxone, a novel cephalosporin in plasma, urine and saliva by high-performance liquid chromatography on an NH2 bonded-phase column. J Chromatogr 1983;273:357–66.PubMedGoogle Scholar
- 225.Van der Stroom, JH. Residues of penicillin G in milk. Utrecht: State University of Utrecht, 1985. Dissertation.Google Scholar
- 226.Bishop JR, Bodine AB, O'Dell GD, Janzen JJ. Quantitative assay for antibiotics used commonly in treatment of bovine infections. J Dairy Sci 1985;68:3031–6.PubMedGoogle Scholar
- 227.Jones GT, Beezer AE, Cosgrove RF, Smith ARW. Rapid microbiological pH assay for the determination of cephradine in pharmaceutical formulations and biological fluids. J Pharm Biomed Anal 1985;3:367–70.CrossRefGoogle Scholar
- 228.Everett JR, Jennings KR, Woodnutt G, Buckingham MJ. Spin-echo 'H NMR spectroscopy: a new method for studying penicillin metabolism. J Chem Soc Chem Commun 1984:894–7.Google Scholar
- 229.Kroll MH, Hagengruber C, Elin RJ. Reaction of picrate with creatinine and cepha antibiotics. Clin Chem 1984;30:1664–6.PubMedGoogle Scholar
- 230.Post D. Antibioticaprescriptie in de huisartspraktijk, te veel en te duur? (Prescription of antibiotics in general practice, too much and too expensive?) Pharm Weekbl 1985;120:4–7.Google Scholar
- 231.Degener JE. Antibiotica — toepassing met beleid. (Antibiotics — application with care) Geneesmiddelen-bulletin 1985;19:19–24.Google Scholar
Copyright information
© Royal Dutch Association for Advancement of Pharmacy 1987