Advertisement

Experientia

, Volume 38, Issue 9, pp 996–1000 | Cite as

The pineal and parietal organs of lower vertebrates

  • E. Dodt
  • H. Meissl
Generalia The Comparative Physiology of Extraocular Photoreception

Keywords

Lower Vertebrate Parietal Organ 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Paul, H. G. Hartwig and A. Oksche, Neurone und zentralnervöse Verbindungen des Pinealorgans der Anuren. Z. Zellforsch.112, 466–493 (1971).CrossRefPubMedGoogle Scholar
  2. 2.
    M. Ueck, M. Vaupel von Harnack and Y. Morita, Weitere experimentelle und neuroanatomische Untersuchungen an den Nervenbahnen des Pinealkomplexes der Anuren. Z. Zellforsch.116, 250–274 (1971).CrossRefPubMedGoogle Scholar
  3. 3.
    E. Paul, Innervation und zentralnervöse Verbindungen des Frontalorgans vonRana temporaria undRana esculenta. Z. Zellforsch.128, 504–511 (1972).CrossRefPubMedGoogle Scholar
  4. 4.
    R. M. Eakin and J. A. Westfall, Fine structure of the retina in the reptilian third eye. J. biophys. biochem. Cytol.6, 133–134 (1959).PubMedGoogle Scholar
  5. 5.
    R. M. Eakin and J. A. Westfall, Further observations on the fine structure of the parietal eye of lizards. J. biophys. biochem. Cytol.8, 483–499 (1960).PubMedGoogle Scholar
  6. 6.
    R. M. Eakin and J. A. Westfall, The development of photoreceptors in the stirnorgan of the treefrog,Hyla regilla. Embryologia (Nagoya)6, 84–98 (1961).Google Scholar
  7. 7.
    W. Steyn, Electron microscopic observations on the epiphysial sensory cells in lizards and the pineal sensory cell problem. Z. Zellforsch.51, 735–747 (1960).CrossRefGoogle Scholar
  8. 8.
    E. Dodt, M. Ueck and A. Oksche, Relations of structure and function: The pineal organ of lower vertebrates, in: Proc. I. E. Purkyne Centenary Symposium, Prague 1971, pp. 253–278.Google Scholar
  9. 9.
    H. W. Korf, Histological, histochemical and electron microscopical studies on the nervous apparatus of the pineal organ in the tiger salamander,Ambystoma tigrinum. Cell Tissue Res.174, 475–497 (1976).CrossRefPubMedGoogle Scholar
  10. 10.
    H. G. Hartwig and H. W. Korf, The epiphysis cerebri of poikilothermic vertebrates: A photosensitive neuroendocrine circumventricular organ. Scanning electron Microsc.2, 163–168 (1978).Google Scholar
  11. 11.
    K. Wake, M. Ueck and A. Oksche, Acetylcholinesterasecontaining nerve cells in the pineal complex and subcommissural area of the frogs,Rana ridibunda andRana esculenta. Cell Tissue Res.154, 423–442 (1974).CrossRefPubMedGoogle Scholar
  12. 12.
    E. Dodt and E. Heerd, Mode of action of pineal nerve fibers in frogs. J. Neurophysiol.25, 405–429 (1962).PubMedGoogle Scholar
  13. 13.
    E. Dodt and E. Scherer, Photic responses from the parietal eye of the lizard,Lacerta sicula campestris (de Betta). Vision Res.8, 61–72 (1968).CrossRefGoogle Scholar
  14. 14.
    L. R. Rivas, The pineal apparatus of tunas and related scombrid fishes as a possible light receptor controlling phototactic movements. Bull. mar. Sci. Gulf Caribb.3, 168–180 (1953).Google Scholar
  15. 15.
    S. H. Gruber, D. I. Hamasaki and E. B. Davis, Window to the epiphysis in sharks. Copeia2, 378–380 (1975).Google Scholar
  16. 16.
    Y. Morita, Entladungsmuster pinealer Neurone der Regenbogenforelle (Salmo irideus) bei Belichtung des Zwischenhirns. Pflügers Arch.289, 155–167 (1966).CrossRefGoogle Scholar
  17. 17.
    D. I. Hamasaki and E. Dodt, Light sensitivity of the lizards epiphysis cerebri. Pflügers Arch.313, 19–29 (1969).CrossRefGoogle Scholar
  18. 18.
    M. Menaker, Synchronization with the photic environment via extraretinal receptors in the avian brain, in: Biochronometry, pp. 315–322. Ed. M. Menaker. Nat. Acad. Sci. USA, 1971.Google Scholar
  19. 19.
    W. F. Ganong, M. D. Shepherd, J. R. Wall, E. E. Brunt and M. T. van Clegg, Penetration of light into the brain of mammals. Endocrinology72, 962–963 (1963).PubMedGoogle Scholar
  20. 20.
    H.-G. Hartwig and T. van Veen, Spectral characteristics of visible radiation penetrating into the brain and stimulating extraretinal photoreceptors. J. comp. Physiol.130, 277–282 (1979).CrossRefGoogle Scholar
  21. 21.
    H. Meissl and M. Ueck, Extraocular photoreception of the pineal gland of the aquatic turtlePseudemys scripta elegans. J. comp. Physiol.140, 173–179 (1980).CrossRefGoogle Scholar
  22. 22.
    D. I. Hamasaki and D. J. Eder, Adaptive radiation of the pineal system, in: Handbook of Sensory Physiology, vol. VII/5, pp. 497–548. Ed. F. Crescitelli. Springer, Berlin/Heidelberg/New York 1977.Google Scholar
  23. 23.
    E. Dodt, The parietal eye (pineal and parietal organs) of lower vertebrates, in: Handbook of Sensory Physiology, vol. VII/3B, pp. 113–140. Ed. R. Jung. Berlin/Heidelberg/New York 1973.Google Scholar
  24. 24.
    Y. Morita and E. Dodt, Nervous activity of the frog's epiphysis cerebri in relation to illumination. Experientia21, 221 (1965).PubMedGoogle Scholar
  25. 25.
    J. Falcón and H. Meissl, The photosensory function of the pineal organ of the pike (Esox lucius L.). Correlation between structure and function. J. comp. Physiol.144, 127–137 (1981).CrossRefGoogle Scholar
  26. 26.
    D. I. Hamasaki and L. Esserman, Neural activity of the frog's frontal organ during steady illumination. J. comp. Physiol.109, 279–285 (1976).CrossRefGoogle Scholar
  27. 27.
    D. I. Hamasaki, Interaction of excitation and inhibition in the stirnorgan of the frog. Vision Res.10, 307–316 (1970).CrossRefPubMedGoogle Scholar
  28. 28.
    C. S. Donley, Color opponent slow potential interactions in the frontal organ of the frog:Rana pipiens. Vision Res.15, 245–251 (1975).CrossRefPubMedGoogle Scholar
  29. 29.
    H. Meissl and C. S. Donley, Change of threshold after light-adaptation of the chromatic response of the frog's pineal organ (Stirnorgan). Vision Res.20, 379–383 (1980).CrossRefPubMedGoogle Scholar
  30. 30.
    E. Dodt, Reversible Umsteuerung lichtempfindlicher Systeme bei Pflanzen und Tieren. Experientia19, 53–56 (1963).PubMedGoogle Scholar
  31. 31.
    W. D. Eldred and J. Nolte, Pineal photoreceptors: Evidence for a vertebrate visual pigment with two physiologically active states. Vision Res.18, 29–32 (1978).CrossRefPubMedGoogle Scholar
  32. 32.
    M. G. F. Fuortes and E. J. Simon, Interactions leading to horizontal cell responses in the turtle retina. J. Physiol.240, 177–198 (1974).PubMedGoogle Scholar
  33. 33.
    W. K. Stell, D. O. Lightfoot, T. G. Wheeler and H. F. Leeper, Goldfish retina: Functional polarization of cone horizontal cell dendrites and synapses. Science190, 989–990 (1975).PubMedGoogle Scholar
  34. 34.
    E. Dodt and Y. Morita, Purkinje-Verschiebung, absolute Schwelle und adaptives Verhalten einzelner Elemente der intrakranialen Anuren-Epiphyse. Vision Res.4, 413–421 (1964).CrossRefPubMedGoogle Scholar
  35. 35.
    Ch. Baumann, Die absolute Schwelle der isolierten Froschnetzhaut. Pflügers Arch.280, 81–88 (1964).CrossRefGoogle Scholar
  36. 36.
    Y. Morita, Direct photosensory activity of the pineal, in: Brain Endocrine Interaction II, The ventricular system, 2nd Int. Symp., Shizuoka, pp. 376–387. Karger, Basel 1975.Google Scholar
  37. 37.
    Y. Le Grand, Light, color and vision. John Wiley, New York 1965.Google Scholar
  38. 38.
    H. G. Hartwig and Ch. Baumann, Evidence for photosensitive pigments in the pineal complex of the frog. Vision Res.14, 597–598 (1974).CrossRefPubMedGoogle Scholar
  39. 39.
    Y. Morita and E. Dodt, Slow photic responses of the isolated pineal organ of lamprey. Nova Acta Leopoldina38, 331–339 (1973).Google Scholar
  40. 40.
    W. H. Miller and M. L. Wolbarsht, Neural activity in the parietal eye of a lizard. Science135, 316–317 (1962).PubMedGoogle Scholar
  41. 41.
    Ch. Baumann, Lichtabhängige langsame Potentiale aus dem Stirnorgan des Frosches. Pflügers Arch.276, 56–65 (1962).CrossRefGoogle Scholar
  42. 42.
    I. Hanyu, H. Niwa and T. Tamura, A slow potential from the epiphysis cerebri of fishes. Vision Res.9, 621–623 (1969).CrossRefPubMedGoogle Scholar
  43. 43.
    C. S. Donley and H. Meissl, Characteristics of slow potentials from the frog epiphysis (Rana esculenta); possible mass photoreceptor potentials. Vision Res.19, 1343–1349 (1979).CrossRefPubMedGoogle Scholar
  44. 44.
    M. Tabata, T. Tamura and H. Niwa, Origin of the slow potential in the pineal organ of the rainbow trout. Vision Res.15, 737–740 (1975).CrossRefPubMedGoogle Scholar
  45. 45.
    J. Falcón, L'organe pinéal du Brochet (Esox lucius, L.). II. Etude en microscopie électronique de la différenciation et de la rudimentation partielle des photorécepteurs; conséquences possibles sur l'élaboration des messages photosensoriels. Ann. Biol. anim. Biochim. Biophys.19, 661–688 (1979).Google Scholar
  46. 46.
    K. T. Brown and M. Murakami, A new receptor potential of the monkey retina with no detectable latency. Nature201, 626–628 (1964).PubMedGoogle Scholar
  47. 47.
    R. A. Cone and W. L. Pak, The early receptor potential, in: Handbook of Sensory Physiology, vol. I, pp. 345–365. Ed. W. R. Loewenstein. Springer, Berlin/Heidelberg/New York 1971.Google Scholar
  48. 48.
    B. E. Goldstein, Early receptor potential of the isolated frog (Rana pipiens) retina. Vision Res.7, 837–845 (1967).CrossRefPubMedGoogle Scholar
  49. 49.
    Y. Morita and E. Dodt, Early receptor potential from the pineal photoreceptor. Pflügers Arch.354, 273–280 (1975).CrossRefGoogle Scholar
  50. 50.
    J. Falcón and J. Tanabe, Early receptor potential of the pineal organ and the eye cup of the pike,Esox lucius. Unpublished results.Google Scholar
  51. 51.
    E. B. Goldstein, Visual pigments and the early receptor potential of the isolated frog retina. Vision Res.8, 953–963 (1968).CrossRefPubMedGoogle Scholar
  52. 52.
    M. Ueck, Innervation of the vertebrate pineal. Progr. Brain Res.52, 45–88 (1979).Google Scholar
  53. 53.
    M. A. Hafeez and L. Zerihun, Studies on central projections of the pineal nerve tract in rainbow trout,Salmo gairdneri Richardson, using cobalt chloride iontophoresis. Cell Tissue Res.154, 485–510 (1974).CrossRefPubMedGoogle Scholar
  54. 54.
    W. D. Eldred, T. E. Finger and J. Nolte, Central projections of the frontal organ ofRana pipiens, as demonstrated by the anterograde transport of horseradish peroxidase. Cell Tissue Res.211, 215–222 (1980).CrossRefPubMedGoogle Scholar
  55. 55.
    J. A. Kappers, The sensory innervation of the pineal organ in the lizard,Lacerta viridis, with remarks on its position in the trend of pineal phylogenetic structural and functional evolution. Z. Zellforsch.81, 581–618 (1967).CrossRefPubMedGoogle Scholar
  56. 56.
    H. W. Korf and U. Wagner, Nervous connections of the parietal eye in the adultLacerta s. sicula rafinesque as demonstrated by anterograde and retrograde transport of horseradish peroxydase. Cell Tissue Res.219, 567–583 (1981).CrossRefPubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag 1982

Authors and Affiliations

  • E. Dodt
    • 1
  • H. Meissl
    • 1
  1. 1.W. G. Kerckhoff-InstitutMax-Planck-Institut für Physiologische und Klinische ForschungBad Nauheim(Federal Republic of Germany)

Personalised recommendations