Skip to main content
Log in

The pineal and parietal organs of lower vertebrates

  • Generalia
  • The Comparative Physiology of Extraocular Photoreception
  • Published:
Experientia Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. E. Paul, H. G. Hartwig and A. Oksche, Neurone und zentralnervöse Verbindungen des Pinealorgans der Anuren. Z. Zellforsch.112, 466–493 (1971).

    Article  CAS  PubMed  Google Scholar 

  2. M. Ueck, M. Vaupel von Harnack and Y. Morita, Weitere experimentelle und neuroanatomische Untersuchungen an den Nervenbahnen des Pinealkomplexes der Anuren. Z. Zellforsch.116, 250–274 (1971).

    Article  CAS  PubMed  Google Scholar 

  3. E. Paul, Innervation und zentralnervöse Verbindungen des Frontalorgans vonRana temporaria undRana esculenta. Z. Zellforsch.128, 504–511 (1972).

    Article  CAS  PubMed  Google Scholar 

  4. R. M. Eakin and J. A. Westfall, Fine structure of the retina in the reptilian third eye. J. biophys. biochem. Cytol.6, 133–134 (1959).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. R. M. Eakin and J. A. Westfall, Further observations on the fine structure of the parietal eye of lizards. J. biophys. biochem. Cytol.8, 483–499 (1960).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. R. M. Eakin and J. A. Westfall, The development of photoreceptors in the stirnorgan of the treefrog,Hyla regilla. Embryologia (Nagoya)6, 84–98 (1961).

    Article  Google Scholar 

  7. W. Steyn, Electron microscopic observations on the epiphysial sensory cells in lizards and the pineal sensory cell problem. Z. Zellforsch.51, 735–747 (1960).

    Article  Google Scholar 

  8. E. Dodt, M. Ueck and A. Oksche, Relations of structure and function: The pineal organ of lower vertebrates, in: Proc. I. E. Purkyne Centenary Symposium, Prague 1971, pp. 253–278.

  9. H. W. Korf, Histological, histochemical and electron microscopical studies on the nervous apparatus of the pineal organ in the tiger salamander,Ambystoma tigrinum. Cell Tissue Res.174, 475–497 (1976).

    Article  CAS  PubMed  Google Scholar 

  10. H. G. Hartwig and H. W. Korf, The epiphysis cerebri of poikilothermic vertebrates: A photosensitive neuroendocrine circumventricular organ. Scanning electron Microsc.2, 163–168 (1978).

    Google Scholar 

  11. K. Wake, M. Ueck and A. Oksche, Acetylcholinesterasecontaining nerve cells in the pineal complex and subcommissural area of the frogs,Rana ridibunda andRana esculenta. Cell Tissue Res.154, 423–442 (1974).

    Article  CAS  PubMed  Google Scholar 

  12. E. Dodt and E. Heerd, Mode of action of pineal nerve fibers in frogs. J. Neurophysiol.25, 405–429 (1962).

    Article  CAS  PubMed  Google Scholar 

  13. E. Dodt and E. Scherer, Photic responses from the parietal eye of the lizard,Lacerta sicula campestris (de Betta). Vision Res.8, 61–72 (1968).

    Article  Google Scholar 

  14. L. R. Rivas, The pineal apparatus of tunas and related scombrid fishes as a possible light receptor controlling phototactic movements. Bull. mar. Sci. Gulf Caribb.3, 168–180 (1953).

    Google Scholar 

  15. S. H. Gruber, D. I. Hamasaki and E. B. Davis, Window to the epiphysis in sharks. Copeia2, 378–380 (1975).

    Article  Google Scholar 

  16. Y. Morita, Entladungsmuster pinealer Neurone der Regenbogenforelle (Salmo irideus) bei Belichtung des Zwischenhirns. Pflügers Arch.289, 155–167 (1966).

    Article  CAS  Google Scholar 

  17. D. I. Hamasaki and E. Dodt, Light sensitivity of the lizards epiphysis cerebri. Pflügers Arch.313, 19–29 (1969).

    Article  CAS  PubMed  Google Scholar 

  18. M. Menaker, Synchronization with the photic environment via extraretinal receptors in the avian brain, in: Biochronometry, pp. 315–322. Ed. M. Menaker. Nat. Acad. Sci. USA, 1971.

    Google Scholar 

  19. W. F. Ganong, M. D. Shepherd, J. R. Wall, E. E. Brunt and M. T. van Clegg, Penetration of light into the brain of mammals. Endocrinology72, 962–963 (1963).

    Article  CAS  PubMed  Google Scholar 

  20. H.-G. Hartwig and T. van Veen, Spectral characteristics of visible radiation penetrating into the brain and stimulating extraretinal photoreceptors. J. comp. Physiol.130, 277–282 (1979).

    Article  Google Scholar 

  21. H. Meissl and M. Ueck, Extraocular photoreception of the pineal gland of the aquatic turtlePseudemys scripta elegans. J. comp. Physiol.140, 173–179 (1980).

    Article  Google Scholar 

  22. D. I. Hamasaki and D. J. Eder, Adaptive radiation of the pineal system, in: Handbook of Sensory Physiology, vol. VII/5, pp. 497–548. Ed. F. Crescitelli. Springer, Berlin/Heidelberg/New York 1977.

    Google Scholar 

  23. E. Dodt, The parietal eye (pineal and parietal organs) of lower vertebrates, in: Handbook of Sensory Physiology, vol. VII/3B, pp. 113–140. Ed. R. Jung. Berlin/Heidelberg/New York 1973.

  24. Y. Morita and E. Dodt, Nervous activity of the frog's epiphysis cerebri in relation to illumination. Experientia21, 221 (1965).

    Article  CAS  PubMed  Google Scholar 

  25. J. Falcón and H. Meissl, The photosensory function of the pineal organ of the pike (Esox lucius L.). Correlation between structure and function. J. comp. Physiol.144, 127–137 (1981).

    Article  Google Scholar 

  26. D. I. Hamasaki and L. Esserman, Neural activity of the frog's frontal organ during steady illumination. J. comp. Physiol.109, 279–285 (1976).

    Article  Google Scholar 

  27. D. I. Hamasaki, Interaction of excitation and inhibition in the stirnorgan of the frog. Vision Res.10, 307–316 (1970).

    Article  CAS  PubMed  Google Scholar 

  28. C. S. Donley, Color opponent slow potential interactions in the frontal organ of the frog:Rana pipiens. Vision Res.15, 245–251 (1975).

    Article  CAS  PubMed  Google Scholar 

  29. H. Meissl and C. S. Donley, Change of threshold after light-adaptation of the chromatic response of the frog's pineal organ (Stirnorgan). Vision Res.20, 379–383 (1980).

    Article  CAS  PubMed  Google Scholar 

  30. E. Dodt, Reversible Umsteuerung lichtempfindlicher Systeme bei Pflanzen und Tieren. Experientia19, 53–56 (1963).

    Article  CAS  PubMed  Google Scholar 

  31. W. D. Eldred and J. Nolte, Pineal photoreceptors: Evidence for a vertebrate visual pigment with two physiologically active states. Vision Res.18, 29–32 (1978).

    Article  CAS  PubMed  Google Scholar 

  32. M. G. F. Fuortes and E. J. Simon, Interactions leading to horizontal cell responses in the turtle retina. J. Physiol.240, 177–198 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. W. K. Stell, D. O. Lightfoot, T. G. Wheeler and H. F. Leeper, Goldfish retina: Functional polarization of cone horizontal cell dendrites and synapses. Science190, 989–990 (1975).

    Article  CAS  PubMed  Google Scholar 

  34. E. Dodt and Y. Morita, Purkinje-Verschiebung, absolute Schwelle und adaptives Verhalten einzelner Elemente der intrakranialen Anuren-Epiphyse. Vision Res.4, 413–421 (1964).

    Article  CAS  PubMed  Google Scholar 

  35. Ch. Baumann, Die absolute Schwelle der isolierten Froschnetzhaut. Pflügers Arch.280, 81–88 (1964).

    Article  CAS  Google Scholar 

  36. Y. Morita, Direct photosensory activity of the pineal, in: Brain Endocrine Interaction II, The ventricular system, 2nd Int. Symp., Shizuoka, pp. 376–387. Karger, Basel 1975.

    Google Scholar 

  37. Y. Le Grand, Light, color and vision. John Wiley, New York 1965.

    Google Scholar 

  38. H. G. Hartwig and Ch. Baumann, Evidence for photosensitive pigments in the pineal complex of the frog. Vision Res.14, 597–598 (1974).

    Article  CAS  PubMed  Google Scholar 

  39. Y. Morita and E. Dodt, Slow photic responses of the isolated pineal organ of lamprey. Nova Acta Leopoldina38, 331–339 (1973).

    Google Scholar 

  40. W. H. Miller and M. L. Wolbarsht, Neural activity in the parietal eye of a lizard. Science135, 316–317 (1962).

    Article  CAS  PubMed  Google Scholar 

  41. Ch. Baumann, Lichtabhängige langsame Potentiale aus dem Stirnorgan des Frosches. Pflügers Arch.276, 56–65 (1962).

    Article  CAS  Google Scholar 

  42. I. Hanyu, H. Niwa and T. Tamura, A slow potential from the epiphysis cerebri of fishes. Vision Res.9, 621–623 (1969).

    Article  CAS  PubMed  Google Scholar 

  43. C. S. Donley and H. Meissl, Characteristics of slow potentials from the frog epiphysis (Rana esculenta); possible mass photoreceptor potentials. Vision Res.19, 1343–1349 (1979).

    Article  CAS  PubMed  Google Scholar 

  44. M. Tabata, T. Tamura and H. Niwa, Origin of the slow potential in the pineal organ of the rainbow trout. Vision Res.15, 737–740 (1975).

    Article  CAS  PubMed  Google Scholar 

  45. J. Falcón, L'organe pinéal du Brochet (Esox lucius, L.). II. Etude en microscopie électronique de la différenciation et de la rudimentation partielle des photorécepteurs; conséquences possibles sur l'élaboration des messages photosensoriels. Ann. Biol. anim. Biochim. Biophys.19, 661–688 (1979).

    Article  Google Scholar 

  46. K. T. Brown and M. Murakami, A new receptor potential of the monkey retina with no detectable latency. Nature201, 626–628 (1964).

    Article  CAS  PubMed  Google Scholar 

  47. R. A. Cone and W. L. Pak, The early receptor potential, in: Handbook of Sensory Physiology, vol. I, pp. 345–365. Ed. W. R. Loewenstein. Springer, Berlin/Heidelberg/New York 1971.

    Google Scholar 

  48. B. E. Goldstein, Early receptor potential of the isolated frog (Rana pipiens) retina. Vision Res.7, 837–845 (1967).

    Article  CAS  PubMed  Google Scholar 

  49. Y. Morita and E. Dodt, Early receptor potential from the pineal photoreceptor. Pflügers Arch.354, 273–280 (1975).

    Article  CAS  PubMed  Google Scholar 

  50. J. Falcón and J. Tanabe, Early receptor potential of the pineal organ and the eye cup of the pike,Esox lucius. Unpublished results.

  51. E. B. Goldstein, Visual pigments and the early receptor potential of the isolated frog retina. Vision Res.8, 953–963 (1968).

    Article  CAS  PubMed  Google Scholar 

  52. M. Ueck, Innervation of the vertebrate pineal. Progr. Brain Res.52, 45–88 (1979).

    Article  CAS  Google Scholar 

  53. M. A. Hafeez and L. Zerihun, Studies on central projections of the pineal nerve tract in rainbow trout,Salmo gairdneri Richardson, using cobalt chloride iontophoresis. Cell Tissue Res.154, 485–510 (1974).

    Article  CAS  PubMed  Google Scholar 

  54. W. D. Eldred, T. E. Finger and J. Nolte, Central projections of the frontal organ ofRana pipiens, as demonstrated by the anterograde transport of horseradish peroxidase. Cell Tissue Res.211, 215–222 (1980).

    Article  CAS  PubMed  Google Scholar 

  55. J. A. Kappers, The sensory innervation of the pineal organ in the lizard,Lacerta viridis, with remarks on its position in the trend of pineal phylogenetic structural and functional evolution. Z. Zellforsch.81, 581–618 (1967).

    Article  CAS  PubMed  Google Scholar 

  56. H. W. Korf and U. Wagner, Nervous connections of the parietal eye in the adultLacerta s. sicula rafinesque as demonstrated by anterograde and retrograde transport of horseradish peroxydase. Cell Tissue Res.219, 567–583 (1981).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dodt, E., Meissl, H. The pineal and parietal organs of lower vertebrates. Experientia 38, 996–1000 (1982). https://doi.org/10.1007/BF01955342

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01955342

Keywords

Navigation