Acta Mathematica Hungarica

, Volume 45, Issue 1–2, pp 223–234 | Cite as

On the Dirichlet kernels and a Hardy space with respect to the Vilenkin system

  • S. Fridli
  • P. Simon


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. V. Bockariev, The logaritmic growth of the aritmetic means of the Lebesgue functions with respect to bounded orthonormal systems,DAN SSSR,223 (1975), 16–19 (in Russian).Google Scholar
  2. [2]
    J. A. Chao, Hardy spaces on regular martingales, Martingale Theory in Harmonic Analysis and Banach Spaces, Cleveland, Ohio, 1981, 18–28.,Lecture Notes in Mathematics,939, Springer (Berlin).Google Scholar
  3. [3]
    J. D. Chen, A theorem of Kaczmarz on multiple generalized Walsh-Fourier series,Bull. Inst. Math. Acad. Sinica,10 (1982), 205–212.Google Scholar
  4. [4]
    R.R. Coifman, G. L. Weiss, Extensions of Hardy spaces and their use in analysis,Bull. Amer. Math. Soc.,83 (1977), 569–645.Google Scholar
  5. [5]
    B. I. Golubov, On a class of complete orthogonal systems,Sib. Mat. Z.,9 (1968), 297–314 (in Russian).Google Scholar
  6. [6]
    F. Móricz, Lebesgue functions and multiple function series I.,Acta Math. Acad. Sci. Hungar.,37 (1981), 481–496.Google Scholar
  7. [7]
    P. Simon, Investigations with respect to the Vilenkin system,Annales Univ. Sci. Budapest (to appear).Google Scholar
  8. [8]
    N. Ja. Vilenkin, On a class of complete orthonormal systems,Izv. Akad. Nauk SSSR, ser. mat.,11 (1947), 363–400.Google Scholar
  9. [9]
    C. Watari, On generalized Walsh-Fourier series,Tohoku Math. J.,10 (1958), 211–241.Google Scholar

Copyright information

© Akadémiai Kiadó 1985

Authors and Affiliations

  • S. Fridli
    • 1
  • P. Simon
    • 1
  1. 1.Institute of MathematicsL. Eötvös UniversityBudapest

Personalised recommendations