Experientia

, Volume 45, Issue 2, pp 126–129 | Cite as

Expression of the mutant gene for L-gulono-γ-lactone oxidase in scurvy-prone rats

  • M. Nishikimi
  • T. Koshizaka
  • K. Kondo
  • T. Ozawa
  • K. Yagi
Full Papers

Summary

A mutant strain of Wistar rats with L-gulono-γ-lactone oxidase deficiency has recently been established. To investigate this deficiency by DNA and RNA blot hybridization analyses, a fragment of a previously cloned cDNA encoding rat L-gulono-γ-lactone oxidase was used as a probe. When genomic DNA of the mutant rat was digested with several restriction enzymes, the probe hybridized to fragments of the same sizes as those produced from DNA of normal rats. Poly(A)+RNA from the liver of the mutant rat was found to contain an L-gulono-γ-lactone oxidase-specific mRNA of a normal size at a comparable level to that of normal rats. An in vitro translation experiment revealed that the mRNA programmed the synthesis of an enzyme protein which had the same molecular weight as that of the translational product of the normal mRNA, although the amount synthesized was markedly reduced as compared with that synthesized with the normal mRNA. In accordance with this observation, a very low but definite degree of L-gulono-γ-lactone oxidase activity was detected in the microsomes of the mutant rat by a newly developed, highly sensitive method.

Key words

L-gulono-γ-lactone oxidase ascorbic acid deficiency enzyme defect rat nuclei acid hybridization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 3.
    Burns, J. J., Nature180 (1975) 553.Google Scholar
  2. 4.
    Burns, J. J., Am. J. Med.26 (1959) 740.CrossRefPubMedGoogle Scholar
  3. 5.
    Nishikimi, M., and Udenfriend, S., Proc. natl Acad. Sci. USA73 (1976) 2066.PubMedGoogle Scholar
  4. 6.
    Sato, P., and Udenfriend, S., Archs Biochem. Biophys.187 (1978) 158.CrossRefGoogle Scholar
  5. 7.
    Mizushima, Y., Harauchi, T., Yoshizaki, T., and Makino, S., Experientia40 (1984) 359.PubMedGoogle Scholar
  6. 8.
    Nishikimi, M., Koshizaka, T., Mochizuki, H., Iwata, H., Makino, S., Hayashi, Y., Ozawa, T., and Yagi, K., Biochem. Int.16 (1988) 615.PubMedGoogle Scholar
  7. 9.
    Koshizaka, T., Nishikimi, M., Ozawa, T., and Yagi, K., J. biol. Chem.263 (1988) 1619.PubMedGoogle Scholar
  8. 10.
    Arrand, J. E., in: Nucleic Acid Hybridization. A Practical Approach, p. 17. Eds B. D. Hames and S. J. Higgins. IRL Press, Oxford 1985.Google Scholar
  9. 11.
    Auffray, C., and Rougeon, F., Eur. J. Biochem.107 (1980) 303.PubMedGoogle Scholar
  10. 12.
    Maniatis, T., Fritsch, E. F., and Sambrook, J., Molecular Cloning. A Laboratory Manual, p. 197. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. 1982.Google Scholar
  11. 13.
    McMaster, G. K., and Carmichael, G. G., Proc. natl Acad. Sci. USA74 (1977) 4835.PubMedGoogle Scholar
  12. 14.
    Koshizaka, T., Nishikimi, M., Tanaka, M., Nakashima, K., Ozawa, T., and Yagi, K., Biochem. Int.15 (1987) 779.PubMedGoogle Scholar
  13. 15.
    Kiuchi, K., Nishikimi, M., and Yagi, K., Biochemistry21 (1982) 5076.CrossRefPubMedGoogle Scholar
  14. 16.
    Kodaka, K., Inagaki, S., Ujiie, T., Ueno, T., and Suda, H., Vitamins59 (1985) 451.Google Scholar
  15. 17.
    Saheki, T., Imamura, Y., Inoue, I., Miura, S., Mori, M., Ohtake, A., Tatibana, M., Katsumata, N., and Ohno, T., J. inher. metab. Dis.7 (1984) 2.CrossRefGoogle Scholar
  16. 18.
    Wiginton, D. A., Adrian, G. S., Friedman, R. L., Suttle, D. P., and Hutton, J. J., Proc. natl Acad. Sci. USA80 (1983) 7481.PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel 1989

Authors and Affiliations

  • M. Nishikimi
    • 1
    • 2
  • T. Koshizaka
    • 1
    • 2
  • K. Kondo
    • 1
    • 2
  • T. Ozawa
    • 1
    • 2
  • K. Yagi
    • 1
    • 2
  1. 1.Department of Biomedical Chemistry, Faculty of MedicineUniversity of NagoyaNagoya(Japan)
  2. 2.Institute of Applied BiochemistryGifu(Japan)

Personalised recommendations