European Journal of Pediatrics

, Volume 153, Issue 4, pp 252–256 | Cite as

The determination of ultrasound velocity in the os calcis, thumb and patella during childhood

  • Eckhard Schönau
  • Anja Radermacher
  • Ulrike Wentzlik
  • Klaus Klein
  • Dietrich Michalk
Imaging Techniques Original Paper


Maximising the accumulation of bone tissue during growth and puberty is one of the most important aims in the prevention of osteoporosis. For prevention studies in children it is necessary to develop methods for skeletal status without radiation. Ultrasonic velocity (speed of sound=SOS) has been proposed as an alternative method. Using a new ultrasonic system (Osteoson K4, Minhorst, Germany), we investigated the reproducibility and age-dependency of SOS in several peripheral bones in 218 children and young adults. Intra-observer (day to day) reproducibility: calcaneus CV=0.64%, patella CV=1.18% and thumb CV=0.43% (n=25). Inter-observer reproducibility: calcaneus CV=1.1%, patella CV=2.48% and thumb CV=0.62% (n=16). SOS in thumb and patella increased with age and peaked at 20–25 years. SOS in the calcaneus showed no increase after puberty. Studies in bones from pigs show no dependency of SOS from the thickness of analysed cortical or trabecular bone slices. We conclude that the reproducibility of SOS measurements especially in the thumb is comparable with those of radiation methods. The SOS data in growing, healthy children and the independency from bone dimensions provides more evidence that SOS describes the elastic qualities of the bones.

Key words

Ultrasound velocity Bone density Osteoporosis Prevention 



dual energy X-ray absorptiometry


speed of sound


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bonjour JP, Theintz G, Buchs B, Glosman D, Rizzoli R (1991) Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescence. J Clin Endocrinol Metab 73: 555–563PubMedGoogle Scholar
  2. 2.
    Evans JA, Tavakoli MB (1990) Ultrasonic attenuation and velocity in bone. Phys Med Biol 10: 1387–1396CrossRefGoogle Scholar
  3. 3.
    Finkelstein JS, Neer RM, Biller BMK, Crawford JD, Klibanski A (1992) Osteopenia in men with a history of delayed puberty. N Engl J Med 326: 600–604PubMedGoogle Scholar
  4. 4.
    Heuck F (1989) Qualitative and quantitative radiologische Analyse des Knochens. In: Dihlmann W, Frommbold W (eds) Schinz-Radiologische Diagnostik in Klinik und Praxis. Band VI. Georg Thieme Verlag, Stuttgartt, pp 151–215Google Scholar
  5. 5.
    Johnston CC Jr, Miller JZ, Slemenda CW (1992) Calcium supplementation and increases in bone mineral density. N Engl J Med 327: 82–87PubMedGoogle Scholar
  6. 6.
    Kröger H, Kotaniemi A, Vaino P, Alhava E (1992) Bone densitometry of the spine and femur in children by dual-energy x-ray absorptiometry. Bone and Mineral 17: 75–85CrossRefPubMedGoogle Scholar
  7. 7.
    Langton CM, Ali AV, Riggs CM, Evans CP, Bonfield W (1990) A contact method for the assessment of ultrasonic velocity and broadband attenuation in cortical and cancellous bone. Clin Phys Physiol Meas 3: 243–249CrossRefGoogle Scholar
  8. 8.
    Langton CM, Evans GP, Hodgskinson R (1990) Ultrasonic, elastic and structural properties of cancellous bone. In: Second Conference on osteoporosis and bone mineral measurement. Bath. UK, 10–11Google Scholar
  9. 9.
    Mazess RB, Wiener SA, Hanson HA, Bonnick SL (1990) Ultrasound measurements of the os calcis. Prepared for the 8th International Workshop on Bone Densitometry.Google Scholar
  10. 10.
    Parfitt AM (1988) The composition, structure and remodeling of bone. A basis for the interpretation of bone mineral measurements. In: Dequeker J, Geusens P, Wahner H (eds) Bone mineral measurement by photon absorptiometry. University Press, Leuven, pp 20–28Google Scholar
  11. 11.
    Prince RL, Smith M, Dick IM, Price RI, Webb PG, Henderson NK, Harris MM (1991) Prevention of postmenopausal osteoporosis. N Engl J Med 325: 1189–1195PubMedGoogle Scholar
  12. 12.
    Reinken L, Stolley H, Droese W, Oast G von (1980) Longitudinale Körperentwicklung gesunder Kinder. Klin Pädiatr 192: 25–33Google Scholar
  13. 13.
    Ringe JD (1992) Epidemiologie der Osteoporose. In: Schild HH, Heller M (eds) Osteoporose. Georg Thieme Stuttgart, p 1–6Google Scholar
  14. 14.
    Rossman P, Zagzebski J, Mesina C, Sorenson J, Mazess R (1989) Comparison of speed of sound and ultrasound attenuation in the os calcis to bone density of the radius, femur and lumbar spine. Clin Phys Physiol Meas 4: 353–360CrossRefGoogle Scholar
  15. 15.
    Schneider P, Börner W, Reudl J, Eilles C, Schlißke K, Scheubeck M (1992) Stellenwert zweier unterschiedlicher Knochendichtemeßmethoden zur Bestimmung des Mineralgehalts am peripheren and axialen Skelett: Z Orthop 130: 16–21PubMedGoogle Scholar
  16. 16.
    Trotter M, Hixon BB (1973) Sequential changes in weight, density and percentage ash weight of human skeletons from early fetal period through old age. Anat Rec 179: 1–18CrossRefGoogle Scholar
  17. 17.
    Zagzebski JA, Rossmann PJ, Mesina C, Mazess RB, Madson EL (1991) Ultrasound transmission measurements through the os calcis. Calcif Tissue Int 49: 107–111PubMedGoogle Scholar
  18. 18.
    Zerwekh JE, Antick PP, Sakhan K, Gonzales J, Gottschalk F, Pak CYC (1991) Assessment by reflection ultrasound method of the effect of intermittant slowrelease sodium fluoride-calcium citrate therapy on material strength of bone. J Bone Min Res 6: 239–244Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Eckhard Schönau
    • 1
  • Anja Radermacher
    • 1
  • Ulrike Wentzlik
    • 1
  • Klaus Klein
    • 2
  • Dietrich Michalk
    • 1
  1. 1.Children's HospitalUniversity KölnKölnGermany
  2. 2.Health Education Research UnitUniversity KölnKölnGermany

Personalised recommendations