Advertisement

Experientia

, Volume 46, Issue 5, pp 433–441 | Cite as

Sialic acid binding lectins

  • C. Mandal
  • C. Mandal
Reviews

Summary

The literature contains several reviews on lectins in general, covering mainly those from plants and invertebrates. However, the sialic acid binding lectins have not been reviewed so far. Considering the importance of sialic acids in cell sociology, lectins which specifically recognize terminal sialic acid residues are potentially useful as analytical tools in studying the biological functions of sialoglycoconjugates. These lectins, along with monoclonal antibodies raised against sialoglycoconjugates, have been used in the detection, affinity purification, cytochemical localization and quantitation of such glycoconjugates. In this review the main emphasis has been placed on the occurrence, general purification procedures, macromolecular properties, sugar specificities and applications of these lectins.

Key words

Sialic acid lectin sialoglycoconjugate cell surface antibody invertebrate lectin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abidi, F. E., Bishayee, S., Bachhawat, B. K., and Bhadra, R., Lectin binding assay by polyethylene glycol 8000. Analyt. Biochem.166 (1987) 257–266.Google Scholar
  2. 2.
    Acton, R. T., Bennett, J. C., Evans, E. E., and Schrohenloher, R. E., Physical and chemical characterization of oyster hemagglutinin. J. biol. Chem.244 (1969) 4128–4135.Google Scholar
  3. 3.
    Ahmed, H., Chatterjee, B. P., Kelm, S., and Schauer, R., Purification of a sialic acid specific lectin from the Indian scorpion (Heterometrus granulomanus). Hoppe-Seyler's Z. physiol. Chem.367 (1986) 501–506.Google Scholar
  4. 4.
    Allen, A. K., Neuberger, A., and Sharon, N., The purification, composition and specificity of wheat-germ agglutinin. Biochem. J.131 (1973) 155–167.Google Scholar
  5. 5.
    Basu, S., Mandal, C., and Allen, K., Chemical modification studies of a unique sialic acid binding lectin fromAchatina fulica snail. Biochem. J.254 (1988) 195–202.Google Scholar
  6. 6.
    Basu, S., Sarkar, M., and Mandal, C., A single step purification of a sialic acid binding lectin (AchatininH) fromAchatina fulica snail. Molec. cell. Biochem.71 (1986) 149–157.Google Scholar
  7. 7.
    Barondes, S. H., Lectins: Their multiple endogenous cellular functions. A. Rev. Biochem.50 (1981) 207–231.Google Scholar
  8. 8.
    Bernheimer, A. W., Hemagglutinin in caterpillar blood, Science115 (1952) 150–151.Google Scholar
  9. 9.
    Bird, G. W. G., Discussion paper: Invertebrate agglutinin in general. Ann. N. Y. Acad. Sci.234 (1974) 51–54.Google Scholar
  10. 10.
    Bishayee, S., and Dorai, T., Isolation and characterization of a sialic acid binding lectin (Carcinoscorpin) from Indian horseshoe crabCarcinoscorpius rotunda cauda. Biochim. biophys Acta623 (1980) 89–97.Google Scholar
  11. 11.
    Brain, P., and Grace, H. J., On the hemagglutinin of the snailAchatina granulata. Vox sang.15 (1986) 297–299.Google Scholar
  12. 12.
    Bretting, H., Stanislawski, E., Jacobs, G., and Becker, W., Isolation and characterization of a lectin from the snailBiomphalaria glabrata and a study of its combining site. Biochim. biophys. Acta749 (1983) 143–152.Google Scholar
  13. 13.
    Broewaert, W. F., Nsimba-Lubaki, M., Peeters, B., and Peumans, W. J., A lectin from elder (Sambucus nigra L.) bark. Biochem. J.221 (1984) 163–169.Google Scholar
  14. 14.
    Brown, R., Almodovar, L. R., Bhatia, H. M., and Boyd, W. C., Blood group specific agglutinins in invertebrates. J. Immun.100 (1968) 214–216.Google Scholar
  15. 15.
    Burness, A. T. H., Glycophorin and sialylated components as receptors for viruses, in: Receptors and Recognition: V8, Viruses Receptors: Part 2, Animal Viruses, pp. 63–84. Eds. K. Longer-Holm and L. Philipson. Chapman and Hall, New York 1981.Google Scholar
  16. 16.
    Campbell, P., Hartman, A. L., and Abel, C. A., Stimulation of B cells, but not T cells or thymocytes, by sialic acid specific lectin. Immunology45 (1982) 155–162.Google Scholar
  17. 17.
    Cheresh, D. A., Varki, A. P., Varki, N. M., Stallcup, W. B., Levine, J., and Reisfeld, R. A., A monoclonal antibody recognizes an O-acylated sialic acid in a human melanoma associated ganglioside. J. biol. Chem.259 (1984) 7453–7459.Google Scholar
  18. 18.
    Chowdhury, M., Sarkar, M., and Mandal, C., Identification and isolation of an agglutinin from uterus of rats, Biochem. biophys. Res. Commun.130 (1985) 1301–1307.Google Scholar
  19. 19.
    Cohen, E., Recognition proteins, receptors and probes: invertebrates, in: Progress in Clinical and Biological Research, vol. 157, p. 207, Ed. E. Cohen. A. R. Liss Inc. New York 1984.Google Scholar
  20. 20.
    Cohen, E., Ildi, G. H. U., Brahmi, Z., and Minowada, J., The nature of cellular agglutinins ofAndroctonus australis (Saharan scorpion) serum. Dev. comp. Immun.3 (1979) 429–440.Google Scholar
  21. 21.
    Cohen, E., Immunologic observations of the agglutinins of the hemolymph ofLimulus polyphemus, andBirgus latro. Trans. N.Y. Acad. Sci.30 (1968) 427–443.Google Scholar
  22. 22.
    Dorai, D. T., Bachhawat, B. K., Bishayee, S., Kannan, K., and Rao, D. R., Further characterization of the sialic acid binding lectin from the horseshoe crabCarcinoscorpius rotunda cauda. Archs Biochem. Biophys.209 (1981) 325–333.Google Scholar
  23. 23.
    Dorai, D. T., Mohon, S., Sirmal, S., and Bachhawat, B. K., On the multispecificity of Carcinoscorpin, the sialic acid binding lectin from the horseshoe crabCarcinoscorpius rotunda cauda. Recognition of glycerolphosphate in membrane teichoic acids. FEBS Lett.148 (1982) 98–102.Google Scholar
  24. 24.
    Dorai, D. T., Sirmal, S., Mohon, S., Bachhawat, B. K., and Balganesh, T. S., Recognition of 2-keto-3-deoxy-octonate in bacterial cells and lipopolysaccharides by the sialic acid binding lectin from the horseshoe crabCarcinoscorpius rotunda cauda. Biochem. biophys. Res. Commun.104 (1982) 141–147.Google Scholar
  25. 25.
    Dorai, D. T., Bachhawat, B. K., and Bishayee, S., Fractionation of sialoglycoproteins on an immobilized sialic acid binding lectin. Analyt. Biochem.115 (1981) 130–137.Google Scholar
  26. 26.
    Etzler, M. E., Plant lectins: molecular and biological aspects. A. Rev. Plant Physiol.36 (1985) 209–234.Google Scholar
  27. 27.
    Frosch, M., Gorgen, I., Boulnois, G. J., Timmis, K. N., and Bitter-Suermann, D., NZB mouse system for production of monoclonal antibodies to weak bacterial antigens: Isolation of an IgG antibody to the polysaccharide capsules ofEscherichia coli K1 and group Bmeningococci. Proc. natl Acad. Sci. USA82 (1985) 1194–1198.Google Scholar
  28. 28.
    Goldstein, I. J., Hammarstrom, S., and Sundblad, G., Precipitation and carbohydrate binding specificity studies on wheat germ agglutinin. Biochim. biophys. Acta405 (1975) 53–61.Google Scholar
  29. 29.
    Goldstein, I. J., and Poretz, R. D., Isolation, physicochemical characterization and carbohydrate binding specificity of lectins. in: The Lectins: Properties, Functions and Applications in Biology and Medicine p. 35–244. Eds I. E. Liener, N. Sharon and I. J. Goldstein, Academic Press Inc., New York 1986.Google Scholar
  30. 30.
    Gombos, G., Morgan, I. G., Waehneldt, T. V., Vincenden, G., and breckenridge, W. G., Glycoproteins of the synaptosomal plasma membrane. Adv. exp. Med. Biol.25 (1971) 101–113.Google Scholar
  31. 31.
    Hakomori, S., Patterson, C. M., Nudelman, E., and Sekiguchi, K., A monoclonal antibody directed to N-acetylneuraminosyl 2–6 galactosyl residue in gangliosides and glycoproteins. J. biol. Chem.258 (1983) 11819–11822.Google Scholar
  32. 32.
    Hall, J. L., and Rowlands, D. T. Jr, Heterogeneity of lobster agglutinins. II. Specificity of agglutinin erythrocyte binding. Biochemistry13 (1974) 828–832.Google Scholar
  33. 33.
    Hall, J. L. and Rowlands, D. T. Jr., Heterogeneity of lobster agglutinins. I. Purification and physicochemical characterization. Biochemistry13 (1974) 821–827.Google Scholar
  34. 34.
    Hapner, K. D., and Jermyn, M. A., Hemagglutinin activity in the hemolymph ofTeleogryllus commodus (Walker) insect. Biochemistry11 (1981) 287–296.Google Scholar
  35. 35.
    Hardy, S. W., Fletcher, T. C., and Olafseu, J. A., Aspects of cellular and humoral defence mechanisms in the Pacific oyster,Crassostrea gigas, in: Developmental Immunobiology, p. 59–66. eds. J. B. Solomon and J. D. Horton. Elsevier/North Holland Biochemical Press, New York 1977.Google Scholar
  36. 36.
    Hardy, S. W., Fletcher, T. C., and Gerrie, L. M., Factors in hemolymph of the musselMytilus edulis L. of possible significance as defence mechanisms. Trans. Biochem. Soc.4 (1976) 473–475.Google Scholar
  37. 37.
    Hardy, S. W., Grant, P. T., and Fletcher, T. C., A hemagglutinin in the tissue fluid of the Pacific oyster,Crassostrea gigas with specificity for sialic acid residues in glycoproteins Experientia33 (1977) 767–769.Google Scholar
  38. 38.
    Hartman, A. L., Campbell, P. A., and Abel, C. A., An improved method for the isolation of lobster lectins. Devl comp. Immun.2 (1978) 617–626.Google Scholar
  39. 39.
    Holm, S. E., Bergholm, A. M., Wagner, B., and Wagner, M., A sialic acid specific lectin fromCepaea hortensis that promotes phagocytosis of a group-b, type-Ia, streptococcal strain. J. med. Microbiol.19 (1985) 317–324.Google Scholar
  40. 40.
    Horowitz, M. I., Immunological aspects and lectins, sec. 1: Immunological aspects, in: The Glycoconjugates, vol. II, Mammalian Glycoproteins, Glycolipids and Proteoglycans, pp. 387–425. Eds M. I. Horowitz and W. Pigman. Academic Press, New York 1978.Google Scholar
  41. 41.
    Iguchi, S. M. M., Momoi, T., Egawa, K., and Matsumoto, J. J., An N-acetylneuraminic acid specific lectin from the body surface mucus of the African giant snail. Comp. Biochem. Physiol. B; comp. Biochem.81 (1985) 897–900.Google Scholar
  42. 42.
    Ishiyama, I., Takatsu, A., Gielen, W., and Uhlenbruck, G., An agglutinin from the sea snailDolabella reacting with neuraminic acid containing structures. Hematologia6 (1972) 109–112.Google Scholar
  43. 43.
    Khalap, S., Thompson, J. E., and Gold, E. R., Hemagglutination and hemagglutination inhibition reactions of extracts from snails and sponges. II. Hemagglutination inhibition tests with biological materials and some substances contained in them. Vox sang.20 (1971) 150–173.Google Scholar
  44. 44.
    Kornfeld, S., and Kornfeld, R., Immunological aspects and lectins, sec. 2: Use of lectins in the study of mammalian glycoproteins, in: The Glycoconjugates, vol. II, Mammalian Glycoproteins, Glycolipids and Proteoglycans, pp. 437–451. Eds. W. Horowitz and W. Pigman. Academic Press, New York 1978.Google Scholar
  45. 45.
    Kronis, K. A., and Craver, J. P., Wheat germ agglutinin dimers bind sialyloligosaccharides at four sites in solution: Proton nuclear megnetic resonance temperature studies at MHz. Biochemistry24 (1985) 826–833.Google Scholar
  46. 46.
    Kuik, J. A. V., Halbeek, H. V., Kamerling, J. P., and Vliegenhart, J. F. G., Primary structure of the low molecular weight carbohydrate chains ofHelix pomatia α-hemocyanin. J. biol. Chem.15 (1985) 13984–13988.Google Scholar
  47. 47.
    Lindahl, M., Brossmer, R., and Wadstrom, T., A sialic acid specific hemagglutinin on enterotoxigenicEscherichia coli binds to glycophorin from human erythrocytes. in: Lectins Biology, Biochemistry, Clinical Biochemistry, vol. 4, pp. 425–433. Eds T. C. BogHansen and J. Breborowicz. New York 1985.Google Scholar
  48. 48.
    Lis, H., and Sharon, N., Lectins as molecules and as tools, A. Rev. Biochem.55 (1986) 35–67.Google Scholar
  49. 49.
    Lloyd, C. W., Sialic acid and the social behaviour of cells, Biol. Rev.50 (1975) 325–350.Google Scholar
  50. 50.
    Mandal, C., and Basu, S., A unique specificity of a sialic acid binding lectin AchatininH, from the hemolymph ofAchatina fulica snail. Biochem. biophys. Res. Commun.148 (1987) 795–801.Google Scholar
  51. 51.
    Mandal, C., Basu, S., and Mandal, C., Physicochemical studies on AchatininH, a novel sialic acid binding lectin. Biochem. J.257 (1988) 65–71.Google Scholar
  52. 52.
    Mandal, C., and Chowdhury, M., Blastogenesis of human and rat lymphocytes by a unique sialic acid binding lectin, in: 3rd Ann. Conf. Tissue Culture Assoc. India. Abst. No. FP10 (1987).Google Scholar
  53. 53.
    Marchalonis, J. J., and Edelman, G. M., Isolation and characterization of a hemagglutinin fromLimulus polyphemus. J. molec. Biol.32 (1968) 453–465.Google Scholar
  54. 54.
    Miller, R. L., Collawn, J. F. Jr, and Fish, W. W., Purification and macromolecular properties of sialic acid specific lectin from the slugLimux flavus. J. biol. Chem.257 (1982) 7574–7580.Google Scholar
  55. 55.
    Mitra, D., Sarkar, M., and Allen, A. K., Further characterization of the cold agglutinin from the snailAchatina fulica. Biochem. J.242 (1987) 331–338.Google Scholar
  56. 56.
    Mohan, S., Bishayee, S., and Bachhawat, B. K., Resolution of microheterogeneity in rat liver acid phosphatase using immobilised sialic acid binding lectin. Indian J. Biochem. Biophys.18 (1981) 177–181.Google Scholar
  57. 57.
    Monsigny, M., Roche, A. C., Sene, C., Maget-Dana, R., and Delmolta, F. M., Sugar-lectin interactions: How does wheat germ agglutinin bind sialoglycoconjugates? Eur. J. Biochem.104 (1980) 147–153.Google Scholar
  58. 58.
    Muchmore, E. A., and Varki, A., Selective inactivation of influenza C esterase: A probe for detecting 9-O-acetylated sialic acids. Science236 (1987) 1293–1295.Google Scholar
  59. 59.
    Muresan, V., Iwanij, V., Smith, Z. D. J., and Jamieson, J. D., Purification and use of Limulin: A sialic acid specific lectin. J. Histochem. Cytochem.30 (1982) 938–946.Google Scholar
  60. 60.
    Noguchi, H., On the multiplicity of the serum hemagglutinins of cold-blooded animals. Zentbl. Bakt. Parasitkde, I. Orig.34 (1903) 286–288.Google Scholar
  61. 61.
    Nowak, T. P., and Barondes, S. H., Agglutinin fromLimulus polyphemus; purification with formalinized horse erythrocytes as the affinity absorbent. Biochim. biophys. Acta393 (1975) 115–123.Google Scholar
  62. 62.
    Pardoe, G. I., Uhlenbruck, G., and Bird, G. W. G., Studies on some heterophil receptors of the Burkitt EB2 lymphoma cell. Immunology18 (1970) 73–83.Google Scholar
  63. 63.
    Pistole, T. G., Naturally occurring bacterial agglutinin in the serum of the horseshoe crab,Limulus polyphemus. Dev. comp. Immun.2 (1978) 65–76.Google Scholar
  64. 64.
    Popoli, M., and Mengano, A., A hemagglutinin specific for sialic acids in rat brain synaptic vesicle-enriched fraction. Neurochem. Res.13 (1988) 63–67.Google Scholar
  65. 65.
    Ravindranaths, M. H., Higa, H. H., Cooper, E. L., and Paulson, J. C., Purification and characterization of an O-acetylsialic acid specific lectin from a marine crabCancer antennarius J. biol. Chem.260 (1985) 8850–8856.Google Scholar
  66. 66.
    Ravindranaths, M. H., Paulson, J. C., and Irie, R. F., Human melanoma antigen O-acetylated ganglioside GD3 is recognized byCancer antennarius lectin. J. biol. Chem.263 (1988) 2079–2086.Google Scholar
  67. 67.
    Ram Pal, R., and Pyle, M., Evidence for mucin and sialic acid as receptors forPseudomonas aeruginosa in the lower respiratory tract. Infect. Immun.41 (1983) 339–344.Google Scholar
  68. 68.
    Rice, R. H., and Etzler, M. E., Chemical modification and hybridization of wheat germ agglutinin. Biochemistry14 (1975) 4093–4099.Google Scholar
  69. 69.
    Roche, A. C., Maurizot, J., and Monsigny, M., Circular dichroism of Limulin:Limulus polyphemus lectin. FEBS Lett.91 (1978) 233–236.Google Scholar
  70. 70.
    Roche, A. C., and Monsigny, M., Purification and properties of limulin lectin (agglutinin) from hemolymph ofLimulus polyphemus. Biochim. biophys. Acta371 (1974) 242–254.Google Scholar
  71. 71.
    Roche, A. C., and Monsigny, M., Limulin (Limulus polyphemus lectin): Isolation, physicochemical properties, sugar specificities and mitogenic activity, in: Biochemical Applications of the Horseshoe Crab (Limulidae), pp. 603–616. Ed. E. Cohen: A. R. Liss Inc. New York 1979.Google Scholar
  72. 72.
    Rosenberg, A., and Schengrund, C. L., Eds, Biological Roles of Sialic Acid. Plenum Press, New York 1976.Google Scholar
  73. 73.
    Roth, J., Lucoc, J. M., and Charest, P. M., Light and electron microscopic demonstration of sialic acid residues with the lectin fromLimux flavus — A cytochemical affinity technique with the use of fetuin-gold complexes J. Histochem. Cytochem.32 (1984) 1167–1176.Google Scholar
  74. 74.
    Schauer, R., Sialic acids as potential determinants on differentiation antigens. Biochem. Soc. Trans. II (1983) 270–271.Google Scholar
  75. 75.
    Schauer, R., Sialic acids and their role as biological masks. Trends biochem. Sci.10 (1985) 357–360.Google Scholar
  76. 76.
    Schauer, R., Shukla, A. K., Schroder, C., and Muller, E., The antirecognition function of sialic acids: Studies with erythrocytes and macrophages. Pure appl. Chem.56 (1984) 907–921.Google Scholar
  77. 77.
    Schauer, R., Veh, R. W., Sander, M., Corfield, A. P., and Weighadt, H., in: Structure and Functions of Gangliosides, pp. 283–294. Eds L. Sevenerholm, P. Mendel, P. F. Urban and H. Dreyfus. Plenum Press, New York 1980.Google Scholar
  78. 78.
    Sharon, N., and Lis, H., Lectins: Cell agglutinating and sugar specific proteins. Science177 (1973) 949–959.Google Scholar
  79. 79.
    Shibuya, N., Goldstein, I. J., Broekaert, W. F., Nsimba-Lubaki, M., Peeters, B., and Peumans, W. J., The elderberry (Sambucus nigra L.) bark lectin, recognizes the Neu5Ac(α2-6)Gal/GalNAc sequence. J. biol. Chem.262 (1987) 1596–1601.Google Scholar
  80. 80.
    Shibuya, N., Goldstein, I. J., Broekaert, W. F., Nsimba-Lubaki, M., Peeters, B., and Peumans, W. J., Fractionation of sialylated oligosaccharides, glycopeptides and glycoproteins on immobilized elderberry (Sambucus nigra L.) bark lectin. Archs Biochem. Biophys.254 (1987) 1–8.Google Scholar
  81. 81.
    Shimizu, S., Ito, M., and Niwa, M., Lectins in the hemolymph of the Japanese horseshoe crab,Tachypleus tridentatus. Biochim. biophys. Acta500 (1977) 71–79.Google Scholar
  82. 82.
    Shimishikura, F., and Sekiguchi, K., Agglutinins in the horseshoe crab hemolymph: Purification of a potent agglutinin of horse erythrocytes from the hemolymph ofTachypleus tridentatus, the Japanese horseshoe crab. J. Biochem.93 (1983) 1539–1546.Google Scholar
  83. 83.
    Shukla, A. K., and Schauer, R., Fluorometric determination of unsubstituted and 9(8)-O-acetylated sialic acid in erythrocyte membrane. Hoppe-Seyler's Z. physiol. Chem.363 (1982) 255–262.Google Scholar
  84. 84.
    Sjoberg, P.-O., Lindahl, M., Porath, J., and Wadstrom, T., Purification and characterization of CS2, a sialic acid specific haemagglutinin of enterotoxigenicEscherichia coli. Biochem. J.255 (1988) 105–111.Google Scholar
  85. 85.
    Taatjes, D. J., Roth, J., Peumans, W., and Goldstein, I. W., Elderberry bark lectin-gold technique for the detection of Neu5Ac(α2-6)Gal/GalNAc sequences: Application and limitations. Histochem. J.20 (1988) 478–490.Google Scholar
  86. 86.
    Tai, T., Sze, L., Kawashima, I., Saxton, R. E., and Irie, R. F., Monoclonal antibody detects monosialogangliosides having a sialic acid α2-3 galactosyl residue. J. biol. Chem.262 (1987) 6803–6807.Google Scholar
  87. 87.
    Thomas, M. W., Walborg, E. F. Jr, and Jirgenson, B., Circular dichroism and saccharide-induced conformational transitions of wheat germ agglutinin. Archs Biochem. Biophys.178 (1977) 625–630.Google Scholar
  88. 88.
    Titani, K., Takio, K., Kuwada, M., Nitta, K., Sakakibara, F., Kawauchi, H., Takayanagi, G., and Hakomori, S., Amino acid sequence of sialic acid binding lectin from frog (Rana catebeiana), eggs. Biochemistry26 (1987) 2189–2194.Google Scholar
  89. 89.
    Tsai, C.-M., Zopf, D. A., Yu, R. K., Wistar, R. Jr, and Ginsburg, V., A Waldenstrom macroglobulin that is both a cold agglutinin and cryoglobulin because it binds N-acetyl neuraminosyl residues. Proc. natl Acad. Sci. USA74 (1977) 4591–4594.Google Scholar
  90. 90.
    Uhlenbruck, G., Sprenger, I., and Heggen, M., Vorkommen eines Neuraminsäure-haltigen Glykoproteins in der Colonflüssigkeit des Seeigels. Naturwissenschaften57 (1970) 246–247.Google Scholar
  91. 91.
    Ulmer, A. J., Scholz, W., and Flad, H. D., Stimulation of colony formation and growth factor production of human T lymphocytes by wheat germ lectin. Immunology47 (1982) 551–556.Google Scholar
  92. 92.
    Umetsu, K., Kosaka, S., and Suzuki, J., Purification and characterization of a lectin from the beetleAllomyrina dichotoma. J. Biochem.95 (1984) 239–245.Google Scholar
  93. 93.
    Vanderwall, J., Canapbell, P. A., and Abel, C. A., Isolation of sialic acid specific lobster lectin (L Ag1) by affinity chromatography on Sepharose-colominic acid beads. Dev. comp. Immun.5 (1981) 679–684.Google Scholar
  94. 94.
    Vasta, G. R., Warr, G. W., and Marchalonis, J. J., Tunicate lectins: Distribution and specificity. Comp. Biochem. Physiol.73B (1982) 887–900.Google Scholar
  95. 95.
    Vasta, G. R., Sullivan, J. T., Cheng, T. C., Marchalonis, J. J., and Warr, G. W., A cell membrane associated lectin of the oyster hemocyte. J. Invert. Path.40 (1982) 367–377.Google Scholar
  96. 96.
    Vasta, G. R., and Cohen, E., The specificity ofCentruroides sculpturatus Ewing (Arizona lethal scorpion) hemolymph agglutinin. Dev. comp. Immun.6 (1982) 219–230.Google Scholar
  97. 97.
    Vasta, G. R., Ilodi, G. H. U., Cohen, E., and Brahmi, Z., A comparative study on the specificity ofAndroctonus australis (Saharan scorpion) andLimulus polyphemus (horseshoe crab) agglutinin. Dev. comp. Immun.6 (1982) 625–639.Google Scholar
  98. 98.
    Vasta, G. R., and Cohen, E., Sialic acid specific lectins in the serum of American spiders of the genusAphonopelma. Dev. comp. Immun.8 (1984) 515–522.Google Scholar
  99. 99.
    Vasta, G. R., Warr, G. W., and Marchalonis, J. J., Serological characterization of humoral lectins from the fresh water prawnMacrobrachium rosenbergii. Dev. comp. Immun.7 (1983) 13–20.Google Scholar
  100. 100.
    Vasta, G. R., and Cohen, E., Naturally occurring hemagglutinins in the hemolymph of scorpionParuroctonus mesaensis Stahnke. Experientia39 (1983) 721–722.Google Scholar
  101. 101.
    Vasta, G. R., and Cohen, E., Sialic acid binding lectins in whip scorpion (Masticoproctus giganteus) serum. J. Invert. Path.43 (1984) 333–342.Google Scholar
  102. 102.
    Vasta, G. R., and Cohen, E., Characterization of the carbohydrate specificity of serum lectins from the scorpionHadrurus arizonensis Stahnke. Comp. Biochem. Physiol.77B (1984) 721–727.Google Scholar
  103. 103.
    Vasta, G. R., and Marchalonis, J. J., Cell Receptors and Cell Communication in Invertebrates. Ed. B. A. Cinader. New York Press, 1985.Google Scholar
  104. 104.
    Wang, W.-C., and Cummings, R. D., The immobilized leukoagglutinin from the seeds ofMaackia amurensis binds with high affinity to complex type Asn-linked oligosaccharides containing terminal sialic acid linked α2,3 to penultimate galactose residue. J. biol. Chem.263 (1988) 4576–4585.Google Scholar
  105. 105.
    Weis, W., Brown, J. H., Cusack, S., Paulson, J. C., Skehel, J. J., and Wiley, D. C., Structure of the influenza virus haemagglutinin complexed with its receptor sialic acid. Nature333 (1988) 426–431.Google Scholar
  106. 106.
    Wright, C. S., Structural comparison of the two distinct sugar binding sites in wheat germ isolectin-II. J. molec. Biol.178 (1984) 91–104.Google Scholar
  107. 107.
    Wright, R. K., and Cooper, E. L., Protochordate immunity. II. Diverse hemolymph lectin in the solitary tunicateStyle clava. Comp. Biochem. Physiol.79B (1984) 269–277.Google Scholar
  108. 108.
    Yeaton, R. W., Invertebrate lectins. I. Occurrence. Dev. comp. Immun.5 (1981) 391–402.Google Scholar
  109. 109.
    Yeaton, R. W., Invertebrate lectins. II. Diversity of specificity, biological synthesis and function in recognition. Dev. comp. Immun.5 (1981) 535–545.Google Scholar
  110. 110.
    Yen, S. E., Mansfield, J. M., and Wallace, J. H., The prickly lettuce agglutinins. I. Isolation from leaves of the prickly lettuce plant (Lactuca scariole). Int. Arch. Allerg. appl. Immun.61 (1980) 32–39.Google Scholar

Copyright information

© Birkhäuser Verlag 1990

Authors and Affiliations

  • C. Mandal
    • 1
  • C. Mandal
    • 1
  1. 1.Indian Institute of Chemical BiologyCalcutta(India)

Personalised recommendations