, Volume 45, Issue 9, pp 839–845 | Cite as

Genetic control of hippocampal cholinergic and dynorphinergic mechanisms regulating novelty-induced exploratory behavior in house mice

  • J. H. F. van Abeelen
Multi-author Review


Neurobehavioral genetics endeavors to trace the pathways from genetic and eenvironmental determinants to neuroanatomical and neurophysiological systems and, thence, to behavior. Exploiting genetic variation as a tool, the behavioral sequelae of manipulating these neuronal systems by drugs and antisera are analyzed. Apart from research in rats, this paper deals mainly with the genetically-influenced regulation in mice of exploratory behaviors that are adaptive in novel surroundings and are hippocampally-mediated. Special attention is paid to neuropeptidergic, GABAergic, and cholinergic synaptic functions in the mouse hippocampus.

The behaviorally different inbred mouse strains C57BL/6 and DBA/2 show opposite reactions (reductions and increases, respectively, in exploration rates) to peripheral and intrahippocampal injections with agents that interfere with peptidergic, cholinergic, and GABAergic neurotransmission. These findings can be explained by an interdependent over-release of opioids, arrested GABA release, and excess acetylcholine in the hippocampal neuronal network of DBA/2 mice, as compared to C57BL/6 mice where these systems are functionally well balanced. Very similar results have been obtained with the lines SRH and SRL, derived from C57BL/6 and DBA/2, and genetically selected for rearing behavior. Most probably, the opioids act to disinhibit exploratory responses. An additional genetic approach is mentioned, in which four inbred mouse strains and one derived heterogeneous stock are used for estimating genetic correlations between structural properties of the hippocampal mossy fibers and levels of hippocampal dynorphin B, on the one hand, and frequencies of exploratory responses to environmental novelty, on the other.

Key words

Inbred, selected, and heterogeneous mouse and rat strains genotype genetic correlations exploratory behavior locomotor activity novelty disinhibition hippocampus mossy fibers opioid peptides antibodies dynorphine B GABA acetylcholine drug treatment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, K. J., Maley, B. E., and Scheff, S. W., Immunocytochemical localization of γ-aminobutyric acid in the rat hippocampal formation. Neurosci. Lett.69 (1986) 7–12.Google Scholar
  2. 2.
    Anisman, H., Wahlsten, D., and Kokkinidis, L., Effects of d-amphetamine and scopolamine on activity before and after shock in three mouse strains. Pharmac. Biochem. Behav.3 (1975) 819–824.Google Scholar
  3. 3.
    Arnsten, A. T., and Segal, D. S., Naloxone alters locomotion and interaction with environmental stimuli. Life Sci.25 (1979) 1035–1042.Google Scholar
  4. 4.
    Barber, R. P., Vaughn, J., Wimer, R. E., and Wimer, C. C., Genetically associated variations in the distribution of dentate granula cell synapses upon the pyramidal cell dendrites in mouse hippocampus. J. comp. Neurol.156 (1974) 417–434.Google Scholar
  5. 5.
    Barchas, J. D., and Sullivan, S., Opioid peptides as neuroregulators: Potential areas for the study of genetic-behavioral mechanisms. Behav. Genet.12 (1982) 69–91.Google Scholar
  6. 6.
    Barnett, S. A., and Cowan, P. E., Activity, exploration, curiosity and fear: An ethological study. Interdiscipl. Sci. Rev.1 (1976) 43–62.Google Scholar
  7. 7.
    Bauer, R. H., Age-dependent effects of scopolamine on avoidance, locomotor activity, and rearing. Behav. Brain Res.5 (1982) 261–279.Google Scholar
  8. 8.
    Belknap, J. K., Haltli, N. R., Goebel, D. M., and Lamé, M., Selective breeding for high and low levels of opiate-induced analgesia in mice. Behav. Genet.13 (1983) 383–396.Google Scholar
  9. 9.
    Berger, B. D., and Stein, L., An analysis of the learning deficits produced by scopolamine. Psychopharmacologia14 (1969) 271–283.Google Scholar
  10. 10.
    Bovet, D., Bovet-Nitti, F., and Oliverio, A., Effects of nicotine on avoidance conditioning of inbred strains of mice. Psychopharmacologia10 (1966) 1–5.Google Scholar
  11. 11.
    Brase, D. A., Loh, H. H., and Way, E. L., Comparison of the effects of morphine on locomotor activity, analgesia and primary and protracted physical dependence in six mouse strains. J. Pharmac. exp. Ther.201 (1977) 368–374.Google Scholar
  12. 12.
    Broadhurst, P. L., Drugs and the Inheritance of Behavior. A Survey of Comparative Psychopharmacogenetics. Plenum, New York and London 1978.Google Scholar
  13. 13.
    Castellano, C., Effects of some anticholinergic drugs on water maze learned behaviour in mice. Psychopharmacologia21 (1971) 361–369.Google Scholar
  14. 14.
    Castellano, C., Strain-dependent effects of naloxone on discrimination learning in mice. Psychopharmacology73 (1981) 152–156.Google Scholar
  15. 15.
    Castellano, C., and Puglisi-Allegra, S., Effects of naloxone and naltrexone on locomotor activity in C57BL/6 and DBA/2 mice. Pharmac. Biochem. Behav.16 (1982) 561–563.Google Scholar
  16. 16.
    Chavkin, C., Bakhit, C., Weber, E., and Bloom, F. E., Relative contents and concomitant release of prodynorphin/neoendorphin-derived peptides in rat hippocampus. Proc. natl Acad. Sci. USA80 (1983) 7669–7673.Google Scholar
  17. 17.
    Collier, T. J., Quirk, G. J., and Routtenberg, A., Separable roles of hippocampal granule cells in forgetting and pyramidal cells in remembering spatial information. Brain Res.409 (1987) 316–328.Google Scholar
  18. 18.
    Cone, R. I., Weber, E., Barchas, J. D., and Goldstein, A., Regional distribution of dynorphin and neo-endorphin peptides in rat brain, spinal cord, and pituitary. J. Neurosci.3 (1983) 2146–2152.Google Scholar
  19. 19.
    Corrigall, W. A., Opiates and the hippocampus: A review of the functional and morphological evidence. Pharmac. Biochem. Behav.18 (1983) 255–262.Google Scholar
  20. 20.
    Crusio, W. E., Schwegler, H., Brust, I., and van Abeelen, J. H. F., Genetic selection for novelty-induced rearing behavior in mice produces changes in hippocampal mossy fiber distributions. J. Neurogenet.5 (1989) 87–93.Google Scholar
  21. 21.
    Crusio, W. E., Schwegler, H., and van Abeelen, J. H. F., Behavioral responses to novelty and structural variation of the hippocampus in mice. II. Multivariate genetic analysis. Behav. Brain Res.32 (1989) 81–88.Google Scholar
  22. 22.
    Crusio, W. E., and van Abeelen, J. H. F., The genetic architecture of behavioural responses to novelty in mice. Heredity56 (1986) 55–63.Google Scholar
  23. 23.
    Deutsch, J. A., and Rocklin, K. W., Amnesia induced by scopolamine and its temporal variations. Nature216 (1967) 89–90.Google Scholar
  24. 24.
    File, S. E., Are central cholinergic paths involved in habituation of exploration and distraction? Pharmac. Biochem. Behav.4 (1976) 695–702.Google Scholar
  25. 25.
    File, S. E., Naloxone reduces social and exploratory activity in the rat. Psychopharmacology71 (1980) 41–44.Google Scholar
  26. 26.
    Flicker, C., and Geyer, M. A., Behavior during hippocampal microinfusions. Brain Res. Rev.4 (1982) 79–147.Google Scholar
  27. 27.
    Flood, J. F., Cherkin, A. and Morley, J. E., Antagonism of endogenous opioids moudlates memory processing. Brain Res.422 (1987) 218–234.Google Scholar
  28. 28.
    Fredens, K., Genetic variations in the histoarchitecture of the hippocampal region of mice. Anat. Embryol.161 (1981) 265–281.Google Scholar
  29. 29.
    Frigeni, V., Bruno, F., Carenzi, A., and Racagni, G., Difference in the development of tolerance to morphine and D-ala2-methionine-enkephalin in C57BL/6J and DBA/2J mice. Life Sci.28 (1981) 729–736.Google Scholar
  30. 30.
    Frischknecht, H. R., Siegfried, B., and Waser, P. G., A genetic approach to opioids and behavior, in: Biological Psychiatry 1985, pp. 37–39. Eds C. Shagass, R. C. Josiassen, W. H. Bridge, K. I. Weiss, D. Stoff and G. M. Simpson. Elsevier, New York 1986.Google Scholar
  31. 31.
    Frischknecht, H. R., Siegfried, B., and Waser, P. G., Opioids and behavior: genetic aspects. Experientia44 (1988) 473–481.Google Scholar
  32. 32.
    Frotscher, M., Mossy fibres form synapses with identified pyramidal basket cells in the CA3 region of the guinea-pig hippocampus: a combined Golgi-electron microscope study. J. Neurocytol.14 (1985) 245–259.Google Scholar
  33. 33.
    Gall, C., Ontogeny of dynorphin-like immunoreactivity in the hippocampal formation of the rat. Brain. Res.307 (1984) 327–331.Google Scholar
  34. 34.
    Gall, C., Seizures induce dramatic and distinctly different changes in enkephalin, dynorphin, and CCK immunoreactivities in mouse hippocampal mossy fibers. J. Neurosci.8 (1988) 1852–1862.Google Scholar
  35. 35.
    Gall, C., Brecha, N., Chang, K.-J., and Karten, H. J., Ontogeny of enkephalin-like immunoreactivity in the rat hippocampus. Neuroscience11 (1984) 359–380.Google Scholar
  36. 36.
    George, F. R., O'Connor, M. F., DeFries, J. C., and Collins, A. C., Components of the GABA system in mice selectively bred for differences in open-field activity. Brain Res.200 (1980) 85–92.Google Scholar
  37. 37.
    Gorris, L. G. M., and van Abeelen, J. H. F., Behavioural effects of (-)naloxone in mice from four inbred strains. Psychopharmacology74 (1981) 355–359.Google Scholar
  38. 38.
    Gozzo, S., and Ammassari-Teule, M., Different mossy fiber patterns in two inbred strains of mice: A functional hypothesis. Neurosci. Lett.36 (1983) 111–116.Google Scholar
  39. 39.
    Grant, M., Cholinergic influences on habituation of exploratory activity in mice. J. comp. physiol. Psychol.86 (1974) 853–857.Google Scholar
  40. 40.
    Gray, J. A., The neuropsychology of anxiety: An enquiry into the functions of the septo-hippocampal system. Behav. Brain Sci.5 (1982) 469–534.Google Scholar
  41. 41.
    Green, S. E., and Summerfield, A., Central and peripheral cholinergic involvement in the habituation of investigatory head poking in rats. J. comp. physiol. Psychol.91 (1977) 1398–1407.Google Scholar
  42. 42.
    Grevert, P., and Goldstein, A., Some effects of naloxone on behavior in the mouse. Psychopharmacology53 (1977) 111–113.Google Scholar
  43. 43.
    Hegmann, J. P., and Possidente, B., Estimating genetic correlations from inbred strains. Behav. Genet.11 (1981) 103–114.Google Scholar
  44. 44.
    Hoffman, D. W., and Zamir, N., Localization and quantitation of dynorphin B in the rat hippocampus. Brain Res.324 (1984) 354–357.Google Scholar
  45. 45.
    Isaacson, R. L., and Pribram, K. H., Eds, The Hippocampus, vol. 4. Plenum, New York and London 1986.Google Scholar
  46. 46.
    Ishikawa, K., Ott, T., and McGaugh, J. L., Evidence for dopamine as a transmitter in dorsal hippocampus. Brain Res.232 (1982) 222–226.Google Scholar
  47. 47.
    Jaffard, R., Destrade, C., Durkin, T., and Ebel, A., Memory formation as related to geneotypic or experimental variations of hippocampal cholinergic activity in mice. Physiol. Behav.22 (1979) 1093–1096.Google Scholar
  48. 48.
    Jaffard, R., Ebel, A., Destrade, C., Durkin, T., Mandel, P., and Cardo, B., Effects of hippocampal electrical stimulation on long-term memory and on cholinergic mechanisms in three inbred strains of mice. Brain Res.133 (1977) 277–289.Google Scholar
  49. 49.
    Katz, R. J., Naltrexone antagonism of exploration in the rat. Int. J. Neurosci.9 (1979) 49–51.Google Scholar
  50. 50.
    Katz, R. J., Endorphisn, exploration and activity, in: Endorphins, Opiates, and Behavioural Processes, pp. 249–267. Eds R. J. Rodgers and S. J. Cooper. Wiley, Chichester, West Sussex, England 1988.Google Scholar
  51. 51.
    Katz, R. J., and Gelbart, J., Endogenous opiates and behavioral responses to environmental novelty. Behav. Biol.24 (1978) 338–348.Google Scholar
  52. 52.
    Kerbusch, J. M. L., and van Abeelen, J. H. F., Behavioral responses to novelty in mice: A reanalysis. Behav. Genet.11 (1981) 373–377.Google Scholar
  53. 53.
    Leaton, R. N., Effects of scopolamine on exploratory motivated behavior. J. comp. physiol. Psychol.66 (1968) 524–527.Google Scholar
  54. 54.
    Lipp, H.-P., Leisinger-Trigona, M.-C., and Schwegler, H., Selective breeding for differential openfield activity of mice entails a differentiation of hippocampal mossy fibers. Neurosci. Lett. Suppl.26 (1986) S109.Google Scholar
  55. 55.
    Lipp, H. P., and Schwegler, H., Hippocampal mossy fibers and avoidance learning, in: Genetics of the Brain, pp. 325–364. Ed. I. Lieblich. Elsevier Biomedical, Amsterdam 1982.Google Scholar
  56. 56.
    Lopes da Silva, F. H., Groenewegen, H. J., Holsheimer, J., Room, P., Witter, M. P., van Groen, Th., and Wadman, W. J., The hippocampus as a set of partially overlapping segments with a topographically organized system of inputs and outputs: The entorhinal cortex as a sensory gate, the medial septum as a gain-setting system and the ventral striatum as a motor interface, in: Electrical Activity of the Archicortex, pp. 83–106. Eds G. Buzsáki and C. H. Vanderwolf. Akadémiai Kiadó, Budapest 1985.Google Scholar
  57. 57.
    Marks, M. J., Patinkin, D. M., Artman, L. D., Burch, J. B., and Collins, A. C., Genetic influences on cholinergic drug response. Pharmac. Biochem. Behav.15 (1981) 271–279.Google Scholar
  58. 58.
    McGinty, J. F., Henriksen, S. J., Goldstein, A., Terenius, L., and Bloom, F. E., Dynorphin is contained within hippocampal mossy fibers: Immunochemical alterations after kainic acid administration and colchicine-induced neurotoxicity. Proc. natl Acad. Sci. USA80 (1983) 589–593.Google Scholar
  59. 59.
    Merchenthaler, I., Maderdrut, J. L., Altschuler, R. A., and Petrusz, P., Immunocytochemical localization of proenkephalin-derived peptides in the central nervous system of the rat. Neuroscience17 (1986) 325–348.Google Scholar
  60. 60.
    Morse III, H.C., Ed., Origins of Inbred Mice. Academic Press, New York 1978.Google Scholar
  61. 61.
    Nieuwenhuys, R., Chemoarchitecture of the Brain. Springer, Berlin, Heidelberg, New York, Tokyo 1985.Google Scholar
  62. 62.
    O'Keefe, J., and Nadel, L., The Hippocampus as a Cognitive Map. Clarendon/Oxford Univ. Press, Oxford, 1978.Google Scholar
  63. 63.
    Oliverio, A., Effects of scopolamine on avoidance conditioning and habituation of mice. Psychopharmacologia12 (1968) 214–226.Google Scholar
  64. 64.
    Oliverio, A., Genetic factors in the control of drug effects on the behaviour of mice, in: The Genetics of Behaviour, pp. 375–395. Ed. J. H. F. van Abeelen. North-Holland, Amsterdam, and American Elsevier, New York 1974.Google Scholar
  65. 65.
    Oliverio, A., and Castellano, C., Genotype-dependent sensitivity and tolerance to morphine and heroin: Dissociation between opiate-induced running and analgesia in the mouse. Psychopharmacologia39 (1974) 13–22.Google Scholar
  66. 66.
    Olton, D. S., Wible, C. G., and Shapiro, M. L., Mnemonic theories of hippocampal function. Behav. Neurosci.100 (1986) 852–855.Google Scholar
  67. 67.
    Racagni, G., Bruno, F., Iuliano, E., and Paoletti, R., Differential sensitivity to morphine-induced analgesia and motor activity in two inbred strains of mice: Behavioral and biochemical correlations. J. Pharmac. exp. Ther.209 (1979) 111–116.Google Scholar
  68. 68.
    Rawlins, J. N. P., Associations across time: The hippocampus as a temporary memory store. Behav. Brain Sci.8 (1985) 479–496.Google Scholar
  69. 69.
    Reggiani, A., Battaini, F., Kobayashi, H., Spano, P., and Trabucchi, M., Genotype-dependent sensitivity to morphine: Role of different opiate receptor populations. Brain Res.189 (1980) 289–294.Google Scholar
  70. 70.
    Robinson, S. E., Malthe-Sørenssen, D., Wood, P. L. and Commissiong, J., Dopaminergic control of the septo-hippocampal cholinergic pathway. J. Pharmac. exp. Ther.208 (1979) 476–479.Google Scholar
  71. 71.
    Rodgers, R. J., and Deacon, R. M. J., Effect of naloxone on the behaviour of rats exposed to a novel environment. Psychopharmacology65 (1979) 103–105.Google Scholar
  72. 72.
    Schmajuk, N. A., Psychological theories of hippocampal function. Physiol. Psychol.12 (1984) 166–183.Google Scholar
  73. 73.
    Schwegler, H., and Lipp, H.-P., Hereditary covariations of neuronal circuitry and behavior: Correlations between the proportions of hippocampal synaptic fields in the regio inferior and two-way avoidance in mice and rats. Behav. Brain Res.7 (1983) 1–38.Google Scholar
  74. 74.
    Seifert, W., Ed., Neurobiology of the Hippocampus. Academic Press, London 1983.Google Scholar
  75. 75.
    Shuster, L., Webster, G. W., Yu, G., and Eleftheriou, B. E., A genetic analysis of the response to morphine in mice: Analgesia and running. Psychopharmacologia42 (1975) 249–254.Google Scholar
  76. 76.
    Solomon, P. R., A time and a place for everything? Temporal processing views of hippocampal function with special reference to attention. Physiol. Psychol.8 (1980) 254–261.Google Scholar
  77. 77.
    Staats, J., Standardized nomenclature for inbred strains of mice: Eighth listing. Cancer Res.45 (1985) 945–977.Google Scholar
  78. 78.
    Storm-Mathisen, J., Leknes, A. K., Bore, A. T., Vaaland, J. L., Edminson, P., Haug, F.-M. S., and Ottersen, O. P. First visualization of glutamate and GABA in neurones by immunocytochemistry. Nature301 (1983) 517–520.Google Scholar
  79. 79.
    Teyler, T. J., and DiScenna, P., The role of hippocampus in memory: A hypothesis. Neurosci. Biobehav. Rev.9 (1985) 377–389.Google Scholar
  80. 80.
    Trabucchi, M., Spano, P. F., Racagni, G., and Oliverio, A., Genotype-dependent sensitivity to morphine: Dopamine involvement in morphine-induced running in the mouse. Brain Res.114 (1976) 536–540.Google Scholar
  81. 81.
    van Abeelen, J. H. F., Genotype and the cholinergic control of exploratory behavior in mice, in: The Genetics of Behaviour, pp. 347–374. Ed. J. H. F. van Abeelen. North-Holland, Amsterdam, and American Elsevier, New York 1974.Google Scholar
  82. 82.
    van Abeelen, J. H. F., Genetic analysis of behavioural responses to novelty in mice. Nature254 (1975) 239–241.Google Scholar
  83. 83.
    van Abeelen, J. H. F., Rearing responses and locomotor activity in mice: Single-locus control. Behav. Biol.19 (1977) 401–404.Google Scholar
  84. 84.
    van Abeelen, J. H. F., and Boersma, H. J. L. M., A genetically controlled hippocampal transmitter system regulating exploratory behavior in mice. J. Neurogenet.1 (1984) 153–158.Google Scholar
  85. 85.
    van Abeelen, J. H. F., Ellenbroek, G. A., and Wigman, H. G. A. J., Exploratory behaviour in two selectively-bred lines of mice after intrahippocampal injection of methylscopolamine. Psychopharmacologia41 (1975) 111–112.Google Scholar
  86. 86.
    van Abeelen, J. H. F., and Gerads, H. J. M. I., Role of hippocampal met-enkephalin in the genotype-dependent regulation of exploratory behavior in mice. J. Neurogenet.3 (1986) 183–186.Google Scholar
  87. 87.
    van Abeelen, J. H. F., and van den Heuvel, C. M., Behavioural responses to novelty in two inbred mouse strains after intrahippocampal naloxone and morphine. Behav. Brain Res.5 (1982) 199–207.Google Scholar
  88. 88.
    van Abeelen, J. H. F., and van Nies, J. H. M., Effects of intrahippocampally-injected naloxone and morphine upon behavioural responses to novelty in mice from two selectively-bred lines. Psychopharmacology81 (1983) 232–235.Google Scholar
  89. 89.
    van Daal, J. H. H. M., de Kok, Y. J. M., Jenks, B. G., Wendelaar Bonga, S. E., and van Abeelen, J. H. F., A genotype-dependent hippocampal dynorphinergic mechanism controls mouse exploration. Pharmac. Biochem. Behav.28 (1987) 465–468.Google Scholar
  90. 90.
    van Daal, J. H. H. M., Zanderink, H. E. A., Jenks, B. G., and van Abeelen, J. H. F., Distribution of dynorphin B and methionine-enkephalin in the mouse hippocampus: Influence of genotype. Neurosci. Lett.97 (1989) 241–244.Google Scholar
  91. 91.
    Vinogradova, O. S., Functional organization of the limbic system in the process of registration of information: Facts and hypotheses, in: The Hippocampus, vol. 2, Neurophysiology and Behavior, pp. 3–69. Eds R. L. Isaacson and K. H. Pribram. Plenum, New York 1975.Google Scholar
  92. 92.
    Walker, J. M., Berntson, G. G., Paulucci, T. S., and Champney, T. C., Blockade of endogenous opiates reduces activity in the rat. Pharmac. Biochem. Behav.14 (1981) 113–116.Google Scholar
  93. 93.
    Warburton, D. M., and Wesnes, K., Drugs as research tools in psychology: Cholinergic drugs and information processing. Neuropsychobiology11 (1984) 121–132.Google Scholar
  94. 94.
    Weber, E., and Barchas, J. D., Immunohistochemical distribution of dynorphin B in rat brain: Relation to dynorphin A and α-neo-endorphin systems. Proc. natl Acad. Sci. USA80 (1983) 1125–1129.Google Scholar
  95. 95.
    Yu, O., Ito, M., Chiu, T. H., and Rosenberg, H. C., GABA-gated chloride ion influx and receptor binding studies in C57BL6J and DBA2J mice. Brain Res.399 (1986) 374–378.Google Scholar

Copyright information

© Birkhäuser Verlag Basel 1989

Authors and Affiliations

  • J. H. F. van Abeelen
    • 1
  1. 1.Department of Animal PhysiologyUniversity of NijmegenNijmegenThe Netherlands

Personalised recommendations