European Journal of Pediatrics

, Volume 155, Issue 3, pp 194–199

Demonstration of mother-to-infant transmission ofStaphylococcus aureus by pulsed-field gel electrophoresis

  • T. Mitsuda
  • S. Fujita
  • S. Yokota
  • K. Arai
Infectious Diseases


We assessed mother-to-infant transmission ofStaphylococcus aureus. Anterior nares swabs of 466 pregnant women, vaginal swabs of 305 of these women and anterior nares swabs of 305 6-day-old infants were examined for the presence ofS. aureus. The results showed that 7.5% of the vaginal swabs from the pregnant women and 10.1% of the anterior nares swabs from the infants were positive forS. aureus. Six of the 466 pregnant women (1.3%) and 12 of the 305 infants (3.9%) carried methicillin-resistantS. aureus (MRSA) in the anterior nares site, but none of the vaginal specimens were positive for MRSA. Analysis ofSmaI digested chromosomal DNA analysis using pulsed-field gel electrophoresis (PFGE) showed that methicillin-sensitiveS. aureus (MSSA) strains obtained from four pairs of pregnant women and their infants were completely identical, which strongly suggesting mother-to-infant transmission ofS. aureus.


This study elucidated the prevalence ofS. aureus carriage among pregnant women and newborn infants. Mother-to-infant infection ofS. aureus was demonstrated phenotypically and genetically. PFGE is a useful tool to detect infection routes including mother-to-infant-infection.

Key words

Mother-child relations Bacterial infection Molecular epidemiology 



ethidium bromide


minimal inhibitory concentration


methicillin-resistantS. aureus


methicillin-sensitiveS. aureus


polymerase chain reaction


pulsed-field gel electrophoresis


toxic shock syndrome toxin-1


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Belkum A, Bax R, Peerbooms P, Goessens WHF, Leeuwen N van, Quint WG (1993) Comparison of phage typing and DNA fingerprinting by polymerase chain reaction for discrimination of methicillin-resistantStaphylococcus aureus strains. J Clin Microbiol 31: 798–803PubMedGoogle Scholar
  2. 2.
    Boyce JM (1991) Patterns of methicillin-resistantStaphylococcus aureus prevalence [editorial; comment]. Infect Control Hosp Epidemiol 12: 79–82PubMedGoogle Scholar
  3. 3.
    Carantonis LM, Spink MS (1963) A selective salt egg agar medium for pathogenicStaphylococci. J Pathol Bacteriol 86: 217–220PubMedGoogle Scholar
  4. 4.
    Coia JE, Noor HI, Platt DJ (1988) Plasmid profiles and restriction enzyme fragmentation patterns of plasmids of methicillin-sensitive and methicillin-resistant isolates ofStaphylococcus aureus from hospital and the community. J Med Microbiol 27: 271–276PubMedGoogle Scholar
  5. 5.
    Dancer SJ, Noble WC (1991) Nasal, axillary, and perineal carriage ofStaphylococcus aureus among women: identification of strains producing epidermolytic toxin. J Clin Pathol 44: 681–684PubMedGoogle Scholar
  6. 6.
    Ekenstam AF, Fieandt BHF von, Henn F, Olow KB (1956) Physical and bacteriological investigations of an acrylic film intended as a material for surgical dressings. Scand J Clin Lab Invest 18: 278–287Google Scholar
  7. 7.
    Goh S-H, Byrne SK, Zhang JL, Chow AW (1992) Molecular typing ofStaphylococcus aureus on the basis of coagulase gene polymorphisms. J Clin Microbiol 30: 1642–1645PubMedGoogle Scholar
  8. 8.
    Hadorn K, Lenz W, Kayser FH, Shalit I, Krasemann C (1990) Use of a ribosomal RNA gene probe for the epidemiological study of methicillin and ciprofloxacin resistantStaphylococcus aureus. Eur J Clin Microbiol Infect Dis 9: 649–653PubMedGoogle Scholar
  9. 9.
    Ichiyama S, Ohta S, Shimokata K, Kato N, Takeuchi J (1991) Genomic DNA Fingerprinting by pulsed-field gel electrophoresis as an epidemiological marker for study of nosocomial infections caused by methicillin-resistantStaphylococcus aureus. J Clin Microbiol 29: 2690–2695PubMedGoogle Scholar
  10. 10.
    Maple PA, Hamilton MJ, Brumfitt W (1989) World-wide antibiotic resistance in methicillin-resistantStaphylococcus aureus. Lancet 1: 537–540PubMedGoogle Scholar
  11. 11.
    Martley FG, Jarvis AW, Bacon DF, Lawrence RC (1970) Typing of coagulase-positiveStaphylococci by proteolytic activity on buffered caseinate-agar with special reference to bacteriophage nontypable strains. Infect Immun 2: 439–442Google Scholar
  12. 12.
    Moore EP, Williams EW (1991) A maternity hospital outbreak of methicillin-resistantStaphylococcus aureus. J Hosp Infect 19: 5–16PubMedGoogle Scholar
  13. 13.
    National Committee for Clinical Laboratory Standards (1993) Methods for dilution antimicrobial susceptibility test for bacteria that grow aerobicallythird edition; approved standard. NC-CLS Document M7-A3Google Scholar
  14. 14.
    Nozue J (1989) Drug resistance ofStaphylococcus aureus in the field of Obstetrics and Gynecology. Acta Obstet Gynaecol Jpn 41: 449–453Google Scholar
  15. 15.
    Prevost G, Pottecher B, Dahlet M, Bientz M, Mantz JM, Piemont Y (1991) Pulsed field gel electrophoresis as a new epidemiological tool for monitoring methicillin-resistantStaphylococcus aureus in an intensive care unit. J Hosp Infect 17: 255–269PubMedGoogle Scholar
  16. 16.
    Prevost G, Jaulhac B, Piemont Y (1992) DNA fingerprinting by pulsed-field gel electrophoresis is more effective than ribotyping in distinguishing among methicillin-resistantStaphylococcus aureus isolates. J Clin Microbiol 30: 967–973PubMedGoogle Scholar
  17. 17.
    Reboli AC, John JJ, Levkoff AH (1989) Epidemic methicillin-gentamicin-resistantStaphylococcus aureus in a neonatal intensive care unit. Am J Dis Child 143: 34–39PubMedGoogle Scholar
  18. 18.
    Saulnier P, Bourneix C, Prevost G, Andremont A (1993) Random amplified polymorphic DNA assay is less discriminant than pulsed-field gel electrophoresis for typing strains of methicillin-resistantStaphylococcus aureus. J Clin Microbiol 31: 982–985PubMedGoogle Scholar
  19. 19.
    Smith CA, Cantor CR (1987) Purification, specific fragmentation, and separation of large DNA molecules. Methods Enzymol 155: 449–467PubMedGoogle Scholar
  20. 20.
    Struelens MJ, Deplano A, Godard C, Maes N, Serruys E (1992) Epidemiological typing and delineation of genetic relatedness of methicillin-resistantStaphylococcus aureus by macrorestriction analysis of genomic DNA by using pulsed-field gel electrophoresis. J Clin Microbiol 30: 2599–2605PubMedGoogle Scholar
  21. 21.
    Takahashi S, Nagano Y (1984) Rapid procedure for isolation of plasmid DNA and amplification to epidemiological analysis. J Clin Microbiol 20: 608–613PubMedGoogle Scholar
  22. 22.
    Tosaka M, Yamane N, Okabe H (1992) Isolation and antimicrobial susceptibility of methicillin-resistantStaphylococcus aureus (MRSA) in Kumamoto University Hospital. Jpn J Clin Med 50: 975–980Google Scholar
  23. 23.
    Tveten Y, Kristiansen BE, Ask E, Jenkins A, Hofstad T (1991) DNA fingerprinting of isolates ofStaphylococcus aureus from newborns and their contacts. J Clin Microbiol 29: 1100–1105PubMedGoogle Scholar
  24. 24.
    Webster J, Faoagali JL (1990) Endemic methicillin-resistantStaphylococcus aureus in a special care baby unit: a 2 year review. J Paediatr Child Health 26: 160–163PubMedGoogle Scholar
  25. 25.
    Zuccarelli AJ, Roy I, Harding GP, Couperus JJ (1990) Diversity and stability of restriction enzyme profiles of plasmid DNA from methicillin-resistantStaphylococcus aureus. J Clin Microbiol 28: 97–102PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • T. Mitsuda
    • 1
  • S. Fujita
    • 1
  • S. Yokota
    • 1
  • K. Arai
    • 2
  1. 1.Department of PaediatricsYokohama City University School of MedicineYokohama CityJapan
  2. 2.Department of MicrobiologyYokohama City Institute of HealthYokohamaJapan

Personalised recommendations