Advertisement

Acta Mathematica Hungarica

, Volume 53, Issue 3–4, pp 339–346 | Cite as

Rings in which derivations satisfy certain algebraic conditions

  • H. E. Bell
  • L. C. Kappe
Article

Keywords

Algebraic Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. E. Bell, Some commutativity results for periodic rings,Acta Math. Acad. Sci. Hungar.,28 (1976), 279–283.CrossRefGoogle Scholar
  2. [2]
    H. E. Bell, On commutativity of periodic rings and near-rings,Acta Math. Acad. Sci. Hungar.,36 (1980), 293–302.CrossRefGoogle Scholar
  3. [3]
    A. Giambruno and I. N. Herstein, Derivations with nilpotent values,Rend. Circ. Mat. Palermo, (2)30 (1981), 199–206.Google Scholar
  4. [4]
    N. D. Gupta, Some group laws equivalent to the commutative law,Arch. Math.,17 (1966), 97–102.CrossRefGoogle Scholar
  5. [5]
    I. N. Herstein, A theorem on rings,Canad. J. Math.,5 (1953), 238–241.Google Scholar
  6. [6]
    I. N. Herstein,Topics in ring theory, Univ. of Chicago Math. Lecture Notes, 1965.Google Scholar
  7. [7]
    A. Kurosh,Theory of groups, v. I, Chelsea Publishing, 1960.Google Scholar
  8. [8]
    F. W. Levi, Groups in which the commutator operation satisfies certain algebraic conditions,J. Indian Math. Soc.,6 (1942), 87–97.Google Scholar
  9. [9]
    F. W. Levi, Notes on group theory I, II,J. Indian Math. Soc.,8 (1944), 1–9.Google Scholar
  10. [10]
    I. D. Macdonald, Some group elements defined by commutators,Math. Scientist,4 (1979), 129–131.Google Scholar
  11. [11]
    W. Streb, Über einen Satz von Herstein und Nakayama,Rend. Sem. Mat. Univ. Padova,64 (1981), 159–171.Google Scholar

Copyright information

© Akadémia Kiadó 1989

Authors and Affiliations

  • H. E. Bell
    • 1
  • L. C. Kappe
    • 2
  1. 1.Department of MathematicsBrock UniversitySt. CatharinesCanada
  2. 2.Department of Math. SciencesSuny Center at BinghamtonBinghamtonUSA

Personalised recommendations