Advertisement

Experientia

, Volume 45, Issue 10, pp 914–922 | Cite as

The pineal and melatonin: Regulators of circadian function in lower vertebrates

  • H. Underwood
Multi-author Review

Summary

The pineal has been identified as a major circadian pacemaker within the circadian system of a number of lower vertebrates although other pacemaking sites have been implicated as well. The rhythmic synthesis and secretion of the pineal hormone, melatonin, is suggested as the mechanism by which the pineal controls circadian oscillators located elsewhere. Both light and temperature cycles can entrain the pineal melatonin rhythm. The pineal, therefore, acts as a photo and thermoendocrine transducer which functions to synchronize internal cycle with cycles in the environment. A model is presented which portrays the pineal as a major component of a ‘multioscillator’ circadian system and which suggests how these multiple circadian clocks are coupled to each other and to cycles of light and temperature in the external world.

Key words

Pineal melatonin circadian rhythm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. 1.
    Adler, K., Extraoptic phase shifting of circadian locomotor rhythm in salamanders. Science164 (1969) 1290–1292.PubMedGoogle Scholar
  2. 2.
    Adler, K., Pineal end organ: role in extraoptic entrainment of circadian locomotor rhythm in frogs, in: Biochronometry, p. 342–350. Ed. M. Menaker. National Academy of Sciences, Washington, D.C. 1971.Google Scholar
  3. 3.
    Adler, K., and Taylor, D. H., Melatonin and thyroxine: influence on compass orientation in salamanders. J. comp. Physiol.136 (1980) 235–241.CrossRefGoogle Scholar
  4. 4.
    Anderson, K., and Turek, F., The influence of blinding and removal of the frontal organ on the activity ofXenopus laevis. Am. Zool.23 (1983) 884.Google Scholar
  5. 5.
    Bassi, C. J., and Powers, M. K., Circadian rhythm in goldfish visual sensitivity. Invest. Ophthalm. vis. Sci.28 (1987) 1811–1815.Google Scholar
  6. 6.
    Bernstein, S. A., Breding, D. J., and Fisher, S. K., The influence of light on cone disk shedding in the lizard,Sceloporus occidentalis. J. Cell Biol.99 (1984) 379–389.CrossRefPubMedGoogle Scholar
  7. 7.
    Besharse, J. C., and Iuvone, P. M., Circadian clock inXenopus eye controlling retinal serotonin N-acetyltransferase. Nature305 (1983) 133–135.CrossRefPubMedGoogle Scholar
  8. 8.
    Birks, E. K., and Ewing, R. D., Photoperiod effects on hydroxyindole-O-methyltransferase activity in the pineal gland of chinook salmon (Oncorhynchus tshawytscha). Gen. comp. Endocr.43 (1981) 277–283.CrossRefPubMedGoogle Scholar
  9. 9.
    Birks, E. K., and Ewing, R. D., Seasonal changes in pineal melatonin content and hydroxyindole-O-methyltransferase activity in juvenile chinook salmon,Oncorhynchus tshawytscha. Gen. comp. Endocr.64 (1986) 91–98.CrossRefPubMedGoogle Scholar
  10. 10.
    Dearry, A., and Barlow, R. B. Jr, Circadian rhythms in the green sunfish retina. J. gen. Physiol.89 (1987) 745–770.CrossRefPubMedGoogle Scholar
  11. 11.
    Deguchi, T., A circadian oscillator in cultured cells of chicken pineal gland. Nature282 (1979) 94–96.PubMedGoogle Scholar
  12. 12.
    Demian, J. J., and Taylor, D. H., Photoreception and locomotor rhythm entrainment by the pineal body of the newt,Notophthalmus viridescens (Amphibia, Urodela, Salamandridae). J. Herpet.11 (1977) 131–139.Google Scholar
  13. 13.
    Eriksson, L. O., Tagesperiodik geblendeter Bachsaiblinge. Naturwissenschaften59 (1972) 219–220.CrossRefGoogle Scholar
  14. 14.
    Eriksson, L. O., Die Jahresperiodik augen- und pinealorganloser BachsaiblingeSalvelinus fontinalis Mitchell. Aquilo Ser. Zool.13 (1972) 8–12.Google Scholar
  15. 15.
    Falcón, J., and Collin, J.-P., In vitro uptake and metabolism of [3H] indole compounds in the pineal organ of the pike. II. A radioautographic study. J. Pineal Res.2 (1985) 357–373.PubMedGoogle Scholar
  16. 16.
    Falcón, J., Guerlotté, J. F., Voisin, P., and Collin, J.-P., Rhythmic melatonin biosynthesis in a photoreceptive pineal organ: a study in the pike. Neuroendocrinology45 (1987) 479–486.PubMedGoogle Scholar
  17. 17.
    Firth, B. T., and Kennaway, D. J., Melatonin content of the pineal, parietal eye and blood plasma of the lizard,Trachydosaurus rugosus: effect of constant and fluctuating temperature. Brain Res.404 (1987) 313–318.CrossRefPubMedGoogle Scholar
  18. 18.
    Firth, B. T., Kennaway, D. J., and Rozenbilds, M. A. M., Plasma melatonin in the scincid lizard,Trachydosaurus rugosus: diel rhythm, seasonality, and the effect of constant light and constant darkness. Gen. comp. Endocr.37 (1979) 493–500.CrossRefPubMedGoogle Scholar
  19. 19.
    Garg, S. K., and Sundararaj, B. I., Role of pineal in the regulation of some aspects of circadian rhythmicity in the catfish,Heteropneustes fossilis (Bloch). Chronobiologia13 (1986) 1–11.PubMedGoogle Scholar
  20. 20.
    Gern, W. A., and Greenhouse, S. S., Examination of in vitro melatonin secretion from superfused trout (Salmo gairdneri) pineal organs maintained under diel illumination or continuous darkness. Gen. comp. Endocr.71 (1988) 163–174.CrossRefPubMedGoogle Scholar
  21. 21.
    Gern, W. A., and Norris, D. O., Plasma melatonin in the neotenic tiger salamander (Ambystoma tigrinum): effects of photoperiod and pinealectomy. Gen. comp. Endocr.38 (1979) 393–398.CrossRefPubMedGoogle Scholar
  22. 22.
    Gern, W. A., Norris, D. O., and Duvall, D., The effect of light and temperature on plasma melatonin in neotenic tiger salamanders (Ambystoma tigrinum). J. Herpet.17 (1983) 228–234.Google Scholar
  23. 23.
    Gern, W. A., Owens, D. W., and Ralph, C. L., Persistence of the nyctohemeral rhythm of melatonin secretion in pinealectomized or optic tract-sectioned trout (Salmo gairdneri). J. exp. Zool.205 (1978) 371–376.CrossRefGoogle Scholar
  24. 24.
    Goudie, C. A., Davis, K. B. and Simco, B. A., Influence of the eyes and pineal gland on locomotor activity patterns of channel catfishIctalurus punctatus. Physiol. Zool.56 (1983) 10–17.Google Scholar
  25. 25.
    Guerlotté, J., Falcón, J., Voisin, P., and Collin, J.-P., Indoles in the photoreceptor cells of the lamprey pineal complex. Annls, Endocr., Paris47 (1986) 62–64.Google Scholar
  26. 26.
    Hamasaki, D. I., and Eder, D. J., Adaptive radiation of the pineal system, in: Handbook of Sensory Physiology, p. 497–548. Ed. F. Crescitelli. Springer, New York 1977.Google Scholar
  27. 27.
    Illnerová, H., and Vanuuek, J., Circadian rhythm in inducibility of rat pineal N-acetyltransferase after brief light pulses at night: control by a morning oscillator. J. comp. Physiol. A154 (1984) 739–744.CrossRefGoogle Scholar
  28. 28.
    Janik, D. S., Circadian organization in the desert iguana. Ph.D. dissertation. University of Oregon, Eugene 1987.Google Scholar
  29. 29.
    Joss, J. M. P., A rhythm in hydroxyindole-O-methyltransferase (HIOMT) activity in the scincid lizard,Lampropholas guichenoti. Gen. comp. Endocr.36 (1978) 521–525.CrossRefPubMedGoogle Scholar
  30. 30.
    Kavaliers, M., The pineal organ and circadian organization of teleost fish. Rev. Can. Biol.38 (1979) 281–292.Google Scholar
  31. 31.
    Kavaliers, M., Pineal involvement in the control of circadian rhythmicity in the lake chub,Couesius plumbeus. J. exp. Zool.209 (1979) 33–40.CrossRefGoogle Scholar
  32. 32.
    Kavaliers, M., Circadian locomotor activity rhythms of the Turbot,Lota lota: seasonal differences in period length and the effect of pinealectomy. J. comp. Physiol.136 (1980) 215–218.CrossRefGoogle Scholar
  33. 33.
    Kavaliers, M., Retinal and extraretinal entrainment action spectra for the activity rhythms of the lake chub,Couesius plumbeus. Behav. neural Biol.30 (1980) 56–67.CrossRefPubMedGoogle Scholar
  34. 34.
    Kavaliers, M., Circadian organization in white suckersCatostomus commersoni: the role of the pineal organ. Comp. Biochem. Physiol.68A (1981) 127–129.CrossRefGoogle Scholar
  35. 35.
    Lythgoe, J. N., and Shand, J., Endogenous circadian retinomotor movements in the neon tetra (Paracheirodon innesi). Invest. Ophthalm. vis. Sci.24 (1983) 1203–1210.Google Scholar
  36. 36.
    McNulty, J. A., Functional morphology of the pineal complex in cyclostomes, elasmobranchs, and bony fishes, in: Pineal Research Reviews, vol. 2, p. 1–40. Ed. R. J. Reiter. Alan R. Liss, Inc., New York 1984.Google Scholar
  37. 37.
    Menaker, M., Eyes — the second (and third) pineal glands?, in: Photoperiodism, Melatonin and the Pineal, p. 78–87. Eds D. Evered and S. Clark. Pitman, London 1985.Google Scholar
  38. 38.
    Menaker, M., and Wisner, S., Temperature-compensated circadian clock in the pineal ofAnolis. Proc. natl Acad. Sci. USA80 (1983) 6119–6121.PubMedGoogle Scholar
  39. 39.
    Moore, R. Y., and Card, J. P., Visual pathways and the entrainment of circadian rhythms, in: The Medical and Biological Effects of Light. p. 123–133. Eds R. J. Wurtman, M. J. Baum and J. T. Potts, Jr. New York Academy of Sciences, New York 1985.Google Scholar
  40. 40.
    Ooka-Souda, S., and Kabasawa, H., Circadian rhythms in locomotor activity of the hagfish,Eptatretus burgeri III. Hypothalamus: a locus of the circadian pacemaker? Zool. Sci.5 (1988) 437–442.Google Scholar
  41. 41.
    Pang, S. F., Shiu, S. Y. W., and Tse, S. F., Effect of photic manipulation on the level of melatonin in the retinas of frogs (Rana tigrina regulosa). Gen. comp. Endocr.58 (1985) 464–470.CrossRefPubMedGoogle Scholar
  42. 42.
    Pierce, M. E., and Besharse, J. C., Melatonin and dopamine interactions in the regulation of rhythmic photoreceptor metabolism, in: Pineal and Retinal Relationships, p. 219–237. Eds P. J. O'Brien and D. C. Klein, Academic Press, New York 1986.Google Scholar
  43. 43.
    Pittendrigh, C. S., On the mechanism of the entrainment of a circadian rhythm by light cycles, in: Circadian Clocks, p. 277–297. Ed. J. Aschoff, North-Holland, Amsterdam 1965.Google Scholar
  44. 44.
    Prasada Rao, P. D., and Sharma, S. C., Retinofugal pathways in juvenile and adult channel catfishIctalurus (Ameiurus) punctatus: an HRP and autoradiographic study. J. comp. Neurol.210 (1982) 37–48.CrossRefPubMedGoogle Scholar
  45. 45.
    Quay, W. B., The parietal eye-pineal complex, in: Biology of the Reptilia, vol. 9, p. 245–406. Ed. C. Gans. Academic Press, New York 1979.Google Scholar
  46. 46.
    Ralph, C. L., Melatonin production by extrapineal tissues, in: Melatonin: Current Status and Perspectives, p. 35–46. Eds N. Birau and W. Schloot. Pergamon Press, New York 1981.Google Scholar
  47. 47.
    Reiter, R. J., Action spectra, dose-response relationships, and temporal aspects of light's effects on the pineal gland, in: The Medical and Biological Effects of Light, p. 215–230. Eds R. J. Wurtman, M. J. Baum and J. T. Potts, Jr. New York Academy of Sciences, New York 1985.Google Scholar
  48. 48.
    Repérant, J., Rio, J. P., Miceli, D., and Lemire, M., A radioautographic study of retinal projections in type I and type II lizards. Brain Res.142 (1978) 401–411.CrossRefPubMedGoogle Scholar
  49. 49.
    Takahashi, J. S., and Menaker, M., Role of the suprachiasmatic nuclei in the circadian system of the house sparrow,Passer domesticus. J. Neurosci.2 (1982) 815–828.PubMedGoogle Scholar
  50. 50.
    Underwood, H., Circadian organization in lizards: the role of the pineal organ. Science195 (1977) 587–589.PubMedGoogle Scholar
  51. 51.
    Underwood, H., Circadian organization in the lizardSceloporus occidentalis: the effects of pinealectomy, blinding, and melatonin. J. comp. Physiol.141 (1981) 537–547.Google Scholar
  52. 52.
    Underwood, H., Circadian pacemakers in lizards: phase-response curves and effects of pinealectomy. Am. J. Physiol.244 (1983) R857-R864.PubMedGoogle Scholar
  53. 53.
    Underwood, H., Circadian organization in the lizardAnolis carolinensis: a multioscillator system. J. comp. Physiol. A152 (1983) 265–274.CrossRefGoogle Scholar
  54. 54.
    Underwood, H., Pineal melatonin rhythms in the lizardAnolis carolinensis; effects of light and temperature cycles. J. comp. Physiol. A157 (1985) 57–65.CrossRefPubMedGoogle Scholar
  55. 55.
    Underwood, H., Extraretinal photoreception in the lizardSceloporus occidentalis: phase response curve. Am. J. Physiol.248 (1985) R407-R414.PubMedGoogle Scholar
  56. 56.
    Underwood, H., Circadian rhythms in lizards: phase response curve for melatonin. J. Pineal Res.3 (1986) 187–196.PubMedGoogle Scholar
  57. 57.
    Underwood, H., Light at night cannot suppress pineal melatonin levels in the lizardAnolis carolinensis. Comp. Biochem. Physiol.84A (1986) 661–663.CrossRefGoogle Scholar
  58. 58.
    Underwood, H., and Calaban, M., Pineal melatonin rhythms in the lizardAnolls carolinensis: I. Response to light and temperature cycles. J. biol. Rhythms2 (1987) 179–193.PubMedGoogle Scholar
  59. 59.
    Underwood, H., and Gross, G., Vertebrate circadian rhythms: retinal and extraretinal photoreception. Experientia38 (1982) 1013–1021.PubMedGoogle Scholar
  60. 60.
    Underwood, H., and Harless, M., Entrainment of the circadian activity rhythm of a lizard to melatonin injections. Physiol. Behav.35 (1985) 267–270.CrossRefPubMedGoogle Scholar
  61. 61.
    Underwood, H., and Menaker, M., Extraretinal photoreceptionin lizards. Photochem. Photobiol.23 (1976) 227–243.Google Scholar
  62. 62.
    van Veen, T., Hartwig, H.G., and Muller, K., Light-dependent motor activity and photonegative behavior in the eel (Anguilla anguilla L.). Evidence for extraretinal and extrapineal photoreception. J. comp. Physiol.111 (1976) 209–219.CrossRefGoogle Scholar
  63. 63.
    Vivien-Roels, B., Arendt, J., and Bradtke, J., Circadian and circannual fluctuations of pineal indoleamines (serotonin and melatonin) inTestudo hermanni Gmelin (Reptilia, Chelonia) 1. Under natural conditions of photoperiod and temperature. Gen. comp. Endocr.37 (1979) 197–210.CrossRefPubMedGoogle Scholar
  64. 64.
    Vivien-Roels, B., and Pévet, P., The pineal gland and the synchronization of reproductive cycles with variations of the environmental climatic conditions, with special reference to temperature, in: Pineal Research Reviews, vol. 1, p. 91–143. Ed. R. J. Reiter. Alan R. Liss, Inc., New York 1983.Google Scholar
  65. 65.
    Vivien-Roels, B., Pévet, P., and Claustrat, B., Pineal and circulating melatonin rhythms in the box turtleTerrapene carolina triunguis: effect of photoperiod, light pulse, and environmental temperature. Gen. comp. Endocr.69 (1988) 163–173.CrossRefPubMedGoogle Scholar
  66. 66.
    Vivien-Roels, B., Pévet, P., Dubois, M.P., Arendt, J., and Brown, G.M., Immunohistochemical evidence for the presence of melatonin in the pineal gland, the retinal and the Harderian gland. Cell Tissue Res.217 (1981) 105–115.CrossRefPubMedGoogle Scholar
  67. 67.
    Wiechmann, A.F., Melatonin: parallels in pineal gland and retina. Exp. Eye Res.42 (1986) 507–527.CrossRefPubMedGoogle Scholar
  68. 68.
    Wiechmann, A.F., Bok, D., and Horwitz, J., Melatonin binding in the frog retina: autoradiographic and biochemical analysis. Invest. Opthalm. vis. Sci.27 (1986) 153–163.Google Scholar

Copyright information

© Birkhäuser Verlag Basel 1989

Authors and Affiliations

  • H. Underwood
    • 1
  1. 1.Department of ZoologyNorth Carolina State UniversityRaleighUSA

Personalised recommendations