Advertisement

Experientia

, Volume 46, Issue 4, pp 379–388 | Cite as

Conceptual approaches to avian navigation systems

  • H. G. Wallraff
Multi-Author Review

Summary

The general basis of migratory orientation in birds is most probably an endogenous time-and-direction program. Directions are selected with respect to celestial and geomagnetic clues. Using these clues, a bird may reach a large population-specific area; however, it will hardly be able to find a particular location, for instance its previous breeding site. Homing to a familiar site over several hundred kilometres of unfamiliar terrain appears to be based on the smelling of atmospheric trace compounds. Conceptual approaches to the mechanism of olfactory navigation have as yet only reached an early state of speculation.

Key words

Birds pigeons migration orientation navigation homing sun compass magnetic field olfaction airborne odours atmospheric trace compounds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Able, K. P., Field studies on avian nocturnal migratory orientation. I. Interaction of sun, wind and stars as directional cues. Anim. Behav.30 (1982) 761–767.Google Scholar
  2. 2.
    Able, K. P., Experimental studies of the development of migratory orientation mechanisms. Experientia46 (1990) 388–394.Google Scholar
  3. 3.
    Able, K. P., Bingman, V. P., Kerlinger, P., and Gergits, W., Field studies of avian noctural migratory orientation. II. Experimental manipulation of orientation in white-throated sparrows (Zonotrichia albicollis) released aloft. Anim. Behav.30 (1982) 768–773.Google Scholar
  4. 4.
    Alerstam, T., Ecological causes and consequences of bird orientation. Experientia46 (1990) 405–415.Google Scholar
  5. 5.
    Baker, R. R., Bird Navigation: The Solution of a Mystery? Hodder and Stoughton, London 1984.Google Scholar
  6. 6.
    Beason, R. C., Interaction of visual and non-visual cues during migratory orientation by the bobolink (Dolichonyx oryzivorus). J. Orn.128 (1987) 317–324.CrossRefGoogle Scholar
  7. 7.
    Beason, R. C., Magnetic sensitivity and orientation in the bobolink, in: Orientation and Navigation—Birds, Humans and Other Animals. Paper No. 7. Royal Institute of Navigation, London 1989.Google Scholar
  8. 8.
    Beck, W., and Wiltschko, W., Magnetic factors control the migratory direction of pied flycatchers (Ficedula hypoleuca Pallas), in: Acta XIX Congr. int. Ornith., pp. 1955–1962. Ed H. Quellet. Uli ersity of Ottawa Press, Ottawa 1988.Google Scholar
  9. 9.
    Becker, J., and Raden, H. van, Meteorologische Gesichtspunkte zur olfaktorischen Navigationshypothese. J. Orn.127 (1986) 1–8.CrossRefGoogle Scholar
  10. 10.
    Bellrose, F. C., Orientation in waterfowl migration, in: Animal Orientation and Navigation pp. 73–99, Ed. R. M. Storm, Oregon State University Press, Corvallis 1967.Google Scholar
  11. 11.
    Berthold, P., Spatiotemporal programs and genetics of orientation. Experientia46 (1990) 363–371.CrossRefGoogle Scholar
  12. 12.
    Bruderer, B., Do migrating birds fly along straight lines?, in: Avian Navigation, pp. 3–14. Eds F. Papi and H. G. Wallraff. Springer, Berlin 1982.Google Scholar
  13. 13.
    Curry-Lindahl, K., Bird Migration in Africa. Academic Press, London 1981.Google Scholar
  14. 14.
    Dorst, J., The Migrations of Birds. Heineimann, London 1962.Google Scholar
  15. 15.
    Etienne, A. S., Maurer, R., and Saucy, F., Limitations in the assessment of path dependent information. Behaviour106 (1988) 81–111.Google Scholar
  16. 16.
    Gatter, W., Vogelzug in Westafrika: Beobachtungen und Hypothesen zu Zugstrategien und Wanderrouten. Vogelzug in Liberia, Teil II. Vogelwarte34 (1987) 80–92.Google Scholar
  17. 17.
    Gould, J. L., The maps sense of pigeons. Nature296 (1982) 205–211.CrossRefGoogle Scholar
  18. 18.
    Gwinner, E., Circannual Rhythms. Springer-Verlag, Berlin 1986.Google Scholar
  19. 19.
    Gwinner, E., and Wiltschko, W., Endogenously controlled changes in migratory direction of the garden warbler,Sylvia borin. J. comp. Physiol.125 (1978) 267–273.CrossRefGoogle Scholar
  20. 20.
    Helbig, A., and Wiltschko, W., Untersuchung populationsspezifischer Zugrichtungen der Mönchsgrasmücke (Sylvia atricapilla) mittels der Emlen-Methode. J. Orn.128 (1987) 311–316.Google Scholar
  21. 21.
    Helbig, A., Berthold, P., and Wiltschko, W., Migratory orientation of blackcaps (Sylvia atricapilla): population-specific shifts of direction during the autumn. Ethology82 (1989) 307–315.Google Scholar
  22. 22.
    Hilgerloh, G., Radar observations of passerine transsaharan migrants in southern Portugal. Ardeola (Madrid)35 (1988) 221–232.Google Scholar
  23. 23.
    Keeton, W. T., The orientational and navigational basis of homing in birds. Adv. Study Behav.5 (1974) 47–132.Google Scholar
  24. 24.
    Keeton, W. T., Avian orientation and navigation: new developments in an old mystery, in: Acta XVII Congr. int. Ornith., pp. 137–157. Ed. R. Nöhring. Verlag Dtsch. Ornith.-Ges., Berlin 1980.Google Scholar
  25. 25.
    Keeton, W. T., Larkin, T. S., and Windsor, D. M., Normal fluctuations in the earth's magnetic field influence pigeon orientation. J. comp. Physiol.95 (1974) 95–103.CrossRefGoogle Scholar
  26. 26.
    Kiepenheuer, J., Inversion of the magnetic field during transport: its influence on the behaviour of pigeons, in: Animal Migration, Navigation, and Homing, pp. 135–142, Eds K. Schmidt-Koenig and W. T. Keeton. Springer, Berlin 1978.Google Scholar
  27. 27.
    Kiepenheuer, J., The effect of magnetic anomalies on the homing behaviour of pigeons: an attempt to analyse the possible factors involved, in: Avian Navigation, pp. 120–128. Eds F. Papi and H. G. Wallraff. Springer, Berlin 1982.Google Scholar
  28. 28.
    Kiepenheuer, J., The magnetic compass mechanism of birds and its possible association with the shifting course directions of migrants. Behav. Ecol. Sociobiol.14 (1984) 81–99.CrossRefGoogle Scholar
  29. 29.
    Kramer, G., Wird die Sonnenhöhe bei der Heimfindeorientierung verwertet? J. Orn.94 (1953) 201–219.CrossRefGoogle Scholar
  30. 30.
    Kramer, G., Long-distance orientation, in: Biology and Comparative Physiology of Birds, vol. 2, pp. 341–371. Ed. A. J. Marshall. Academic Press, New York 1961.Google Scholar
  31. 31.
    Kowalski, U., Wiltschko, R., and Füller, E., Normal fluctuations of the geomagnetic field may affect initial orientation in pigeons. J. comp. Physiol. A163 (1988) 593–600.CrossRefGoogle Scholar
  32. 32.
    Logan, J. A., Prather, M. J., Wofsy, S. C., and McElroy, M. B., Tropospheric chemistry: a global perspective. J. geophys. Res.86 (1981) 7210–7254.Google Scholar
  33. 33.
    Matthews, G. V. T., Sun navigation in homing pigeons. J. exp. Biol.30 (1953) 243–267.Google Scholar
  34. 34.
    Matthews, G. V. T., Bird Navigation, 2nd edn. Univ. Press, Cambridge 1968.Google Scholar
  35. 35.
    Mayr, E., Cause and effect in biology. Science134 (1961) 1501–1506.PubMedGoogle Scholar
  36. 36.
    Mayr, E., Teleological and teleonomic: a new analysis. Boston Studies Philos. Sci.14 (1974) 91–117.Google Scholar
  37. 37.
    Mittelstaedt, H., and Mittelstaedt, M.-L., Homing by path integration, in: Avian Navigation, pp. 290–297. Eds F. Papi and H. G. Wallraff. Springer, Berlin 1982.Google Scholar
  38. 38.
    Moreau, R. E., The Palaearctic-African Bird Migration System. Academic Press, London 1972.Google Scholar
  39. 39.
    Müller, M., and Wehner, R., Path integration in desert ants,Cataglyphis fortis. Proc. natl Acad. Sci. USA85 (1988) 5287–5290.Google Scholar
  40. 40.
    Myres, M. T., Dawn ascent and re-orientation of Scandinavian thrushes (Turdus spp.) migrating at night over the northeastern Atlantic Ocean. Ibis106 (1964) 7–51.Google Scholar
  41. 41.
    Neuss, M., and Wallraff, H. G., Orientation of displaced homing pigeons with shifted circadian clocks: predictions vs observation. Naturwissenschaften75 (1988) 363–365.CrossRefPubMedGoogle Scholar
  42. 42.
    Papi, F., The olfactory navigation system of the homing pigeon. Verh. dt. zool. Ges.69 (1976) 184–205.Google Scholar
  43. 43.
    Papi, F., Olfaction and homing in pigeons: ten years of experiments, in: Avian Navigation, pp. 149–159. Eds F. Papi and H. G. Wallraff. Springer, Berlin 1982.Google Scholar
  44. 44.
    Papi, F., Pigeon navigation: solved problems and open questions. Monitore zool. ital. (N.S.)20 (1986) 471–517.Google Scholar
  45. 45.
    Papi, F., Olfactory navigation. Experientia46 (1990) 352–363.Google Scholar
  46. 46.
    Papi, F., Fiore, L., Fiaschi, V., and Benvenuti, S., The influence of olfactory nerve section on the homing capacity of carrier pigeons. Monitore zool. ital. (N.S.)5 (1971) 265–267.Google Scholar
  47. 47.
    Papi, F., Fiore, L., Fiaschi, V., and Benvenuti, S., Olfaction and homing in pigeons. Monitore zool. ital. (N.S.)6 (1972) 85–95.Google Scholar
  48. 48.
    Papi, F., Meschini, E., and Baldaccini, N. E., Homing behaviour of pigeons released after having been placed in an alternating magnetic field. Comp. Biochem. Physiol.76A (1983) 673–682.CrossRefGoogle Scholar
  49. 49.
    Pearson, D., Palaearctic passerine migrants in Kenya and Uganda: temporal and spatial patterns of their movements, in: Physiological and Ecophysiological Aspects of Bird Migration, in press. Ed E. Gwinner. Springer, Berlin.Google Scholar
  50. 50.
    Pennycuick, C. J., The physical basis of astro-navigation in birds: theoretical considerations. J. exp. Biol.37 (1960) 573–593.Google Scholar
  51. 51.
    Perdeck, A. C., Two types of orientation in migrating starlings,Sturnus vulgaris L., and chaffinches,Fringilla coelebs L., as revealed by displacement experiments. Ardea46 (1958) 1–37.Google Scholar
  52. 52.
    Perdeck, A. C., An experiment on the ending of autumn migration in starlings. Ardea52 (1964) 133–139.Google Scholar
  53. 53.
    Richardson, W. J., Timing and amount of bird migration in relation to weather: a review. Oikos30 (1978) 224–272.Google Scholar
  54. 54.
    Richardson, W. J., Wind and orientation of migratory birds: a review. Experientia46 (1990) 416–425.Google Scholar
  55. 55.
    Schmidt-Koenig, K., Internal clocks and homing. Cold Spring Harbor Symp. quant. Biol.25 (1960) 389–393.PubMedGoogle Scholar
  56. 56.
    Schmidt-Koenig, K., Avian Orientation and Navigation. Academic Press, London 1979.Google Scholar
  57. 57.
    Schmidt-Koenig, K., Bird navigation: Has olfactory orientation solved the problem? Quart. Rev. Biol.62 (1987) 31–47.CrossRefGoogle Scholar
  58. 58.
    Schmidt-Koenig, K., The sun compass. Experientia46 (1990) 336–342.Google Scholar
  59. 59.
    Schüz, E., Die Frühauflassung ostpreussischer Jungstörche in West-Deutschland durch die Vogelwarte Rossitten 1933–1936. Bonn zool. Beitr.1 (1949) 239–253.Google Scholar
  60. 60.
    Schüz, E., Grundriss der Vogelzugskunde. Parey, Berlin 1971.Google Scholar
  61. 61.
    Semm, P., and Beason, R. C., Sensory basis of bird orientation. Experientia46 (1990) 372–378.PubMedGoogle Scholar
  62. 62.
    Sterbetz, I., and Szijj, J., Das Zugverhalten der Rothalsgans (Branta ruficollis) in Europa. Vogelwarte24 (1968) 266–277.Google Scholar
  63. 63.
    Terrill, S., Evolutionary aspects of orientation and migration in birds. Experientia46 (1990) 395–404.Google Scholar
  64. 64.
    Walcott, C., Effects of magnetic fields on pigeon orientation, in: Acta XVII Congr. int. Ornith., pp. 588–592. Ed. R. Nöhring. Verlag Dtsch. Ornith.-Ges., Berlin 1980.Google Scholar
  65. 65.
    Walcott, C., Is there evidence of a magnetic map in homong pigeons?, in: Avian Navigation, pp. 99–108. Eds F. Papi and H. G. Wallraff. Springer, Berlin 1982.Google Scholar
  66. 66.
    Walcott, C., and Michener, M. C., Sun navigation in homing pigeons—attempts to shift sun coordinates. J. exp. Biol.54 (1971) 291–316.Google Scholar
  67. 67.
    Waldvogel, J. A., Olfactory navigation in homing pigeons: Are the current models atmospherically realistic? Auk104 (1987) 369–379.Google Scholar
  68. 68.
    Waldvogel, J. A., Olfactory orientation by birds, in: Current Ornithology, vol. 6, pp. 269–321. Ed. D. M. Power. Plenum Press, New York 1989.Google Scholar
  69. 69.
    Wallraff, H. F., Über die Flugrichtungen verfrachteter Brieftauben in Abhängigkeit vom Heimatort und vom Ort der Freilassung. Z. Tierpsychol.27 (1970) 303–351.Google Scholar
  70. 70.
    Wallraff, H. G., Das Navigationssystem der Vögel. Oldenbourg, München 1974.Google Scholar
  71. 71.
    Wallraff, H. G., Selected aspects of migratory orientation in birds. Vogelwarte29, Sonderheft, (1977) 64–76.Google Scholar
  72. 72.
    Wallraff, H. G., Proposed principles of magnetic field perception in birds. Oikos30 (1978) 188–194.Google Scholar
  73. 73.
    Wallraff, H. G., Social interrelations involved in migratory orientation of birds: possible contribution of field studies. Oikos30 (1978) 401–404.Google Scholar
  74. 74.
    Wallraff, H. G., Goal-oriented and compass-oriented movements of displaced homing pigeons after confinement in differentially shielded aviaries. Behav. Ecol. Sociobiol.5 (1979) 201–225.CrossRefGoogle Scholar
  75. 75.
    Wallraff, H. G., Does pigeon homing depend on stimuli perceived during displacement? I. Experiments in Germany. J. comp. Physiol.139 (1980) 193–201.CrossRefGoogle Scholar
  76. 76.
    Wallraff, H. G., Relevance of atmospheric odours and geomagnetic field to pigeon navigation: What is the ‘map’ basis? Comp. Biochem. Physiol.76A (1983) 643–663.CrossRefGoogle Scholar
  77. 77.
    Wallraff, H. G., Theoretical aspects of avian navigation, in: Acta XVIII Congr. int. Ornith., pp. 284–292. Eds V. D. Ilyichev and V. M. Gavrilov. Nauka, Moscow 1985.Google Scholar
  78. 78.
    Wallraff, H. G., Navigation mit Duftkarte und Sonnenkompass: Das Heimfindevermögen der Brieftauben. Naturwissenschaften75 (1988) 380–392.CrossRefPubMedGoogle Scholar
  79. 79.
    Wallraff, H. G., Simulated navigation based on unreliable sources of information (Models on pigeon homing, part 1). J. theor. Biol.137 (1989) 1–19.Google Scholar
  80. 80.
    Wallraff, H. G., Simulated navigation based on assumed gradients of atmospheric trace gases (Models on pigeon homing, part 2). J. theor. Biol.138 (1989) 511–528.Google Scholar
  81. 81.
    Wallraff, H. G., Long-distance navigation of homing pigeons based on airborne olfactory signals, in: Olfaction and Taste X, in press. Ed. K. B. Døving.Google Scholar
  82. 82.
    Wallraff, H. G., Navigation by homing pigeons. Ethol. Ecol. Evol.2 (1990) in press.Google Scholar
  83. 83.
    Wallraff, H. G., and Gelderloos, O. G., Experiments on migratory orientation of birds with simulated stellar sky and geomagnetic field: method and preliminary results. Oikos30 (1978) 207–215.Google Scholar
  84. 84.
    Wallraff, H. G., and Kiepenheuer, J., Migración y orientación en aves: observaciones en otoño en el Sur-Oeste de Europa. Ardeola (Madrid)8 (1963) 19–40.Google Scholar
  85. 85.
    Wallraff, H. G., and Neumann, M. F., Contribution of olfactory navigation and non-olfactory pilotage to pigeon homing. Behav. Ecol. Sociobiol.25 (1989) 293–302.CrossRefGoogle Scholar
  86. 86.
    Wallraff, H. G., and Sinsch, U., The role of ‘outward-journey information’ in homing experiments with pigeons: new data on ontogeny of navigation and general survey. Ethology77 (1988) 10–27.Google Scholar
  87. 87.
    Williams, T. C., and Williams, J. M., The orientation of transoceanic migrants, in: Physiological and Ecophysiological Aspects of Bird Migration, in press. Ed. E. Gwinner. Springer, Berlin.Google Scholar
  88. 88.
    Wiltschko, R., and Wiltschko, W., Relative importance of stars and the magnetic field for the accuracy of orientation in night-migrating birds. Oikos30 (1978) 195–206.Google Scholar
  89. 89.
    Wiltschko, R., and Wiltschko, W., Pigeon homing: olfactory orientation—a paradox. Behav. Ecol. Sociobiol.24 (1989) 163–173.CrossRefGoogle Scholar
  90. 90.
    Wiltschko, R., Wiltschko, W., and Keeton, W. T., Effect of outward journey in an altered magnetic field on the orientation of young homing pigeons, in: Animal Migration, Navigation, and Homing, pp. 152–161. Eds K. Schmidt-Koenig and W. T. Keeton. Springer, Berlin 1978.Google Scholar
  91. 91.
    Wiltschko, W., and Wiltschko, R., The interaction of stars and magnetic field in the orientation system of night migrating birds. I. Autumn experiemtns with European warblers (gen.Sylvia). Z. Tierpsychol.37 (1975) 337–355.PubMedGoogle Scholar
  92. 92.
    Wiltschko, W., and Wiltschko, R., The interaction of stars and magnetic field in the orientation system of night migrating birds. II. Spring experiments with European robins (Erithacus rubecula). Z. Tierpsychol.39 (1975) 265–282.PubMedGoogle Scholar
  93. 93.
    Wiltschko, W., and Wiltschko, R., A theoretical model for migratory orientation and homing in birds. Oikos30 (1978) 177–187.Google Scholar
  94. 94.
    Wiltschko, W., and Wiltschko, R., The role of outward journey information in the orientation of homing pigeons, in: Avian Navigation, pp. 239–252. Eds F. Papi and H. G. Wallraff. Springer, Berlin 1982.Google Scholar
  95. 95.
    Wiltschko, W., and Wiltschko, R., Magnetic orientation in birds, in: Current Ornithology, vol. 5, pp. 67–121. Ed. R. F. Johnson. Plenum Press, New York 1988.Google Scholar
  96. 96.
    Wiltschko, W., and Wiltschko, R., Magnetic orientation and celestial cues in migratory orientation. Experientia46 (1990) 342–352.Google Scholar
  97. 97.
    Yeagley, H. L., A preliminary study of a physical basis of bird navigation. J. appl. Phys.18 (1947) 1035–1063.CrossRefGoogle Scholar
  98. 98.
    Zink, G., Der Zug europäischer Singvögel: Ein Atlas der Wiederfunde beringter Vögel, Vol. 1–4. Vogelzug-Verlag, Möggingen 1973–1985.Google Scholar
  99. 99.
    Zink, G., Richtungsänderungen auf dem Zuge bei europäischen Singvögeln. Vogelwarte29, Sonderheft (1977) 44–54.Google Scholar
  100. 100.
    Zink, G., Räumliche Zugmuster europäischer Singvögel, in: Acta XVII Congr. int. Ormith., pp. 512–516. Ed R. Nöhring, Verlag Dtsch. Ornith.-Ges., Berlin 1980.Google Scholar
  101. 101.
    Zuur, B., Nearest neighbour distances in day and night migrating birds: A study using stereophotography. Vogelwarte32 (1984) 206–218.Google Scholar

Copyright information

© Birkhäuser Verlag 1990

Authors and Affiliations

  • H. G. Wallraff
    • 1
  1. 1.Max-Planck-Institut für VerhaltensphysiologieSeewiesen Post StarnbergFederal Republic of Germany

Personalised recommendations