Experientia

, Volume 52, Issue 12, pp 1069–1076

Regulated protein degradation in mitochondria

Milti-Author Reviews

Abstract

Various adenosine triphosphate (ATP)-dependent proteases were identified within mitochondria which mediate selective mitochondrial protein degradation and fulfill crucial functions in mitochondrial biogenesis. The matrix-localized PIM1 protease, a homologue of theEscherichia coli Lon protease, is required for respiration and maintenance of mitochondrial genome integrity. Degradation of non-native polypeptides by PIM1 protease depends on the chaperone activity of the mitochondrial Hsp70 system, posing intriguing questions about the relation between the proteolytic system and the folding machinery in mitochondria. The mitochondrial inner membrane harbors two ATP-dependent metallopeptidases, them- and thei-AAA protease, which expose their catalytic sites to opposite membrane surfaces and cooperate in the degradation of inner membrane proteins. In addition to its proteolytic activity, them-AAA protease has chaperone-like activity during the assembly of respiratory and ATP-synthase complexes. It constitutes a quality control system in the inner membrane for membrane-embedded protein complexes.

Key words

Mitochondria proteolysis PIM1 protease AAA protease chaperone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goldberg A. L. and Rock K. L. (1992) Proteolysis, proteasomes and antigen presentation. Nature357: 375–379CrossRefPubMedGoogle Scholar
  2. 2.
    Gottesman S. and Maurizi M. R. (1992) Regulation by proteolysis: energy-dependent proteases and their targets. Microbiol. Rev.56: 592–621PubMedGoogle Scholar
  3. 3.
    Takeshige K., Baba M., Tsuboi S., Noda T. and Ohsumi Y. (1992) Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for induction. J. Cell Biol.119: 301–311CrossRefPubMedGoogle Scholar
  4. 4.
    Walker J. H., Burgess R. L. and Mayer R. J. (1978) Relative rate of turnover of subunits of mitochondrial proteins. Biochem. J.176: 927–932PubMedGoogle Scholar
  5. 5.
    Russel S. M., Burgess R. J. and Mayer R. J. (1980) Protein degradation in rat liver during post-natal development. Biochem. J.192: 321–330PubMedGoogle Scholar
  6. 6.
    Lipsky N. G. and Pedersen P. L. (1981) Protein turnover in animal cells: half-lives of mitochondria and mitochondrial subfractions of rat liver based on [14C] bicarbonate incorporation. J. Biol. Chem.256: 8652–8657PubMedGoogle Scholar
  7. 7.
    Dice J. F. and Goldberg A. L. (1975) Relationship between in vivo degradative rates and isoelectric points of proteins. Proc. Natl. Acad. Sci. USA72: 3893–3897PubMedGoogle Scholar
  8. 8.
    Desautels M. and Goldberg A. L. (1982) Demonstration of an ATP-dependent, vanadate-sensitive endoprotease in the matrix of rat liver mitochondria. J. Biol. Chem.257: 11673–11679PubMedGoogle Scholar
  9. 9.
    Desaultels M. and Goldberg A. L. (1982) Liver mitochondria contain an ATP-dependent, vanadate-sensitive pathway for the degradation of proteins. Proc. Natl. Acad. Sci. USA79: 1869–1873PubMedGoogle Scholar
  10. 10.
    Watabe S. and Kimura T. (1985) Adrenal cortex mitochondrial enzyme with ATP-dependent protease and protein-dependent ATPase activities. J. Biol. Chem.260: 14498–14504PubMedGoogle Scholar
  11. 11.
    Watabe S. and Kimura T. (1985) ATP-dependent protease in bovine adrenal cortex. J. Biol. Chem.260: 5511–5517PubMedGoogle Scholar
  12. 12.
    Kutejová E., Durcová G., Surovková E. and Kuzela S. (1993) Yeast mitochondrial ATP-dependent protease: purification and comparison with the homologous rat enzyme and the bacterial ATP-dependent protease La. FEBS Lett.329: 47–50CrossRefPubMedGoogle Scholar
  13. 13.
    Wang N., Gottesman S., Willingham M. C., Gottesman M. M. and Maurizi M. R. (1993) A human mitochondrial ATP-dependent protease that is highly homologous to bacterial Lon protease. Proc. Natl. Acad. Sci. USA90: 11247–11251PubMedGoogle Scholar
  14. 14.
    Van Dyck L., Pearce, D. A. and Sherman F. (1994) PIM1 encodes a mitochondrial ATP-dependent protease that is required for mitochondrial function in the yeastSaccharomyces cerevisiae. J. Biol. Chem.269: 238–242PubMedGoogle Scholar
  15. 15.
    Suzuki C. K., Suda K., Wang N. and Schatz, G. (1994) Requirement for the yeast gene LON in intramitochondrial proteolysis and maintenance of respiration. Science264: 273–276PubMedGoogle Scholar
  16. 16.
    Teichmann, U., van Dyck L., Guiard, B., Fischer H., Glockshuber R., Neupert W. et al. (1996) Substitution of PIM1 protease in mitochondria byEscherichia coli Lon protease. J. Biol. Chem.271: 10137–10142CrossRefPubMedGoogle Scholar
  17. 17.
    Wagner, I., Arlt H., van Dyck, L., Langer T. and Neupert W. (1994) Molecular chaperones cooperate with PIM1 protease in the degradation of misfolded proteins in mitochondria. EMBO J.13: 5135–5145PubMedGoogle Scholar
  18. 18.
    Rowley, N., Prip B. C., Westermann, B., Brown, C., Schwarz, E., Barrell B., et al. (1994) Mdjlp, a novel chaperone of the DnaJ family is involved in mitochondrial biogenesis and protein folding. Cell77: 249–259CrossRefPubMedGoogle Scholar
  19. 19.
    Bolliger, L., Deloche, O., Glick, B. S., Georgopoulos C., Jeno P., Kronidou N. et al. (1994) A mitochondrial homolog of bacterial GrpE interacts with mitochondrial hsp70 and is essential for viability. EMBO J.13: 1998–2006PubMedGoogle Scholar
  20. 20.
    Laloraya S., Dekker, P. J. T., Voos, W., Craig, E. A. and Pfanner N. (1995) Mitochondrial GrpE modulates the function of matrix Hsp70 in translocation and maturation of preproteins. Mol. Cell. Biol.15: 7098–7105PubMedGoogle Scholar
  21. 21.
    Westermann B., Prip-Buus C., Neupert W. and Schwarz E. (1995) The role of the GrpE homologue, Mgelp, in mediating protein import and protein folding in mitochondria. EMBO J.14: 3452–3460PubMedGoogle Scholar
  22. 22.
    Prip-Buus C., Westermann B., Schmitt M., Langer T., Neupert W. and Schwarz E. (1996) Role of the mitochondrial DnaJ homologue, Mdjlp, in the prevention of heat-induced protein aggregation. FEBS Lett.380: 142–146CrossRefPubMedGoogle Scholar
  23. 23.
    Ikeda, E., Yoshida, S., Mitsuzawa, H., Uno I. and Toh-e, A. (1994) YGE1 is a yeast homolog ofEscherichia coli grpE and is required for maintenance of mitochondrial functions. FEBS Lett.339: 265–268CrossRefPubMedGoogle Scholar
  24. 24.
    Stuart R. A., Cyr D. M., Craig E. A., and Neurpert W. (1994) Mitochondrial molecular chaperones: their role in protein translocation. Trends. Biochem. Sci.19: 87–92CrossRefPubMedGoogle Scholar
  25. 25.
    Langer T. and Neupert W. (1994) Chaperoning mitochondrial biogenesis. In: The Biology of Heat Shock Proteins and Molecular Chaperones, pp. 53–83, Morimoto, R., Tissières A. and Georgopoulos C. (eds), Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  26. 26.
    Sherman M. and Goldberg A. L. (1992) Involvement of the chaperonin dnaK in the rapid degradation of a mutant protein inEscherichia coli. EMBO J.11: 71–77PubMedGoogle Scholar
  27. 27.
    Schmitt M., Neupert W. and Langer T (1995) Hsp78, a Clp homologue within mitochondria, can substitute for chaperone functions of mt-hsp70. EMBO J.14: 3434–3444PubMedGoogle Scholar
  28. 28.
    Horwich A. L. (1995) Resurrection or destruction? Curr. Biol.5: 455–458CrossRefPubMedGoogle Scholar
  29. 29.
    Kessel M., Maurizi M. R., Kim B., Kocsis E., Trus B. L., Singh S. K. et al. (1995) Homology in structural organization betweenE. coli ClpAP protease and the eukaryotic 26 S proteasome. J. Mol. Biol.250: 587–594CrossRefPubMedGoogle Scholar
  30. 30.
    Gottesman, S., Clark W. P., de Crecy-Lagard V. and Maurizi M. R. (1993) ClpX, an alternative subunit for the ATP-dependent Clp protease ofEscherichia coli: sequence and in vivo activities. J. Biol. Chem.268: 22618–22626PubMedGoogle Scholar
  31. 31.
    Wojtkowiak D., Georgopoulos C. and Zylicz M. (1993) Isolation and characterization of ClpX, a new ATP-dependent specificity component of the Clp protease ofEscherichia coli. J. Biol. Chem.268: 22609–22617PubMedGoogle Scholar
  32. 32.
    Wickner S., Gottesman S., Skowyra D. Hoskins, J., McKenney K. and Maurizi M. R. (1994) A molecular chaperone, ClpA, functions like DnaK and DnaJ. Proc. Natl. Acad. Sci. USA91: 12218–12222PubMedGoogle Scholar
  33. 33.
    Wawrzynow A., Wojtkowiak D., Marszalek J., Banecki B., Jonsen M., Graves B. et al. (1995) The ClpX heat-shock protein ofEscherichia coli, the ATP-dependent substrate specificity component of the ClpP-ClpX protease, is a novel molecular chaperone. EMBO J.14: 1867–1877PubMedGoogle Scholar
  34. 34.
    Bross P., Andresen B. S., Knudsen I., Kruse T. A. and Gregersen, N. (1995) Human ClpP protease: cDNA sequence, tissue-specific expression and chromosomal assignment of the gene. FEBS Lett.377: 249–252CrossRefPubMedGoogle Scholar
  35. 35.
    Leonhardt S. A., Fearon K., Danese P. N. and Mason T. L. (1993) Hsp78 encodes a yeast mitochondrial heat shock protein in the Clp family of ATP-dependent proteases. Mol. Cell. Biol.13: 6304–6313.PubMedGoogle Scholar
  36. 35a.
    Schmitt M., Neupert W. and Langer T. (1996) The molecular chaperone Hsp78 confers compartment-specific thermotolerance to mitochondria. J. Cell Biol.134: 1375–1386CrossRefPubMedGoogle Scholar
  37. 36.
    Wheeldon, L. W., Dianoux, A. C., Bof M. and Vignais P. V. (1974) Stable and labile products of mitochondrial protein synthesis in vitro. Eur. J. Biochem.46: 189–199CrossRefPubMedGoogle Scholar
  38. 37.
    Kalnov S. L., Novikova L. A., Zubatov A. S. and Luzikov V. N. (1979) Proteolysis of the products of mitochondrial protein synthesis in yeast mitochondria and submitochondrial particles. Biochem. J.182: 195–202PubMedGoogle Scholar
  39. 38.
    Tzagoloff A., and Myers A. M. (1986) Genetics of mitochondrial biogenesis. Annu. Rev. Biochem.55: 249–285CrossRefPubMedGoogle Scholar
  40. 39.
    Grivell L. A. (1989) Nucleo-mitochondrial interactions in yeast mitochondrial biogenesis. Eur. J. Biochem.182: 477–493CrossRefPubMedGoogle Scholar
  41. 40.
    Yasuhara T., Mera Y., Nakai T., and Ohashi A. (1994) ATP-dependent proteolysis in yeast mitochondria. J. Biochem.115: 1166–1171PubMedGoogle Scholar
  42. 41.
    Pajic A., Tauer R., Feldmann H., Neupert W., and Langer T. (1994) Yta10p is required for the ATP-dependent degradation of polypeptides in the inner membrane of mitochondria. FEBS Lett.353: 201–206CrossRefPubMedGoogle Scholar
  43. 42.
    Thorsness P. E., White K. H. and Fox T. D., (1993) Inactivation ofYME1, a member of the ftsH-SEC18-PAS1-CDC48 family of putative ATPase-encoding genes, causes increased escape of DNA from mitochondria inSaccharomyces cerevisiae. Mol. Cell. Biol.13: 5418–5426PubMedGoogle Scholar
  44. 43.
    Guélin E., Rep M. and Grivell L. A. (1994) Sequence of the AFG3 gene encoding a new member of the FtsH/Ymel/Tma subfamily of the AAA-protein family. Yeast10: 1389–1394CrossRefPubMedGoogle Scholar
  45. 44.
    Tauer R., Mannhaupt G., Schnall R., Pajic A., Langer T. and Feldmann H. (1994) Yta10p a member of a novel ATPase family in yeast, is essential for mitochondrial function. FEBS Lett.353: 197–200CrossRefPubMedGoogle Scholar
  46. 45.
    Tzagoloff A., Yue J., Jang J. and Paul M. F. (1994) A new member of a family of ATPases is essential for assembly of mitochondrial respiratory chain and ATP synthetase complexes inSaccharomyces cerevisiae. J. Biol. Chem.269: 26144–26151PubMedGoogle Scholar
  47. 46.
    Kunau W. H., Beyer A., Franken T., Gotte K., Marzioch M., Saidowsky J. et al. (1993) Two complementary approaches to study peroxisome biogenesis inSaccharomyces cerevisiae: forward and reversed genetics. Biochimie75: 209–224CrossRefPubMedGoogle Scholar
  48. 47.
    Confalonieri F. and Duguet M. (1995) A 200-amino acid ATPase module in search of a basic function. BioEssays17: 639–650CrossRefPubMedGoogle Scholar
  49. 48.
    Rawlings N. D. and Barrett A. J. (1993) Evolutionary families of peptidases. Biochem. J.,290: 205–218PubMedGoogle Scholar
  50. 49.
    Stöcker W. and Bode W. (1995) Structural features of a superfamily of zinc-endopeptidases: the metzincins. Curr. Op. Struct. Biol.5: 383–390.CrossRefGoogle Scholar
  51. 50.
    Arlt H., Tauer R., Feldmann H., Neupert W. and Langer T. (1996) The YTA10-12-complex, an AAA protease with chaperone-like activity in the inner membrane of mitochondria. Cell85: 875–885CrossRefPubMedGoogle Scholar
  52. 51.
    Guélin, E., Rep M. and Grivell L. A. (1996) Afg3p, a mitochondrial ATP-dependent metalloprotease, is involved in the degradation of mitochondrially-encoded Cox1, Cox3, Cob, Su6, Su8 and Su9 subunits of the inner membrane complexes III, IV and V. FEBS Lett.381: 42–46CrossRefPubMedGoogle Scholar
  53. 52.
    Leonhard K., Herrmann J. M., Stuart R. A., Mannhaupt G., Neupert W. and Langer T. (1996) AAA proteases with catalytic sites on opposite membrane surfaces comprise a proteolytic system for the ATP-dependent degradation of inner membrane proteins in mitochondria. EMBO J.15: 4218–4229PubMedGoogle Scholar
  54. 53.
    Paul M. F. and Tzagoloff A. (1995) Mutations inRCA1 andAFG3 inhibit F1-ATPase assembly inSaccharomyces cerevisiae. FEBS Lett.373: 66–70CrossRefPubMedGoogle Scholar
  55. 54.
    Schnall R., Mannhaupt G., Stucka, R., Tauer R., Ehnle S., Schwarzlose C. et al. (1994) Identification of a set of yeast genes coding for a novel family of putative ATPases with high similarity to constituents of the 26S protease complex. Yeast10: 1141–1155CrossRefPubMedGoogle Scholar
  56. 55.
    Nakai T., Yasuhara T., Fujiki Y. and Ohashi A. (1995) Multiple genes, including a member of the AAA family, are essential for degradation of unassembled subunit 2 of cytochromec oxidase in yeast mitochondria. Mol. Cell. Biol.15: 4441–4452PubMedGoogle Scholar
  57. 56.
    Nakai T., Mera Y., Yasuhara T. and Ohashi A. (1994) Divalent metal ion-dependent mitochondrial degradation of unassembled subunits 2 and 3 of cytochrome c oxidase. J. Biochem.116: 752–758PubMedGoogle Scholar
  58. 57.
    Pearce D. A. and Sherman F. (1995) Degradation of cytochrome oxidase subunits in mutants of yeast lacking cytochrome c and suppression of the degradation by mutation ofyme1. J. Biol. Chem.270: 1–4CrossRefPubMedGoogle Scholar
  59. 58.
    Weber E. R., Hanekamp T. and Thorsness P. E. (1996) Biochemical and functional analysis of theYME1 gene product, an ATP and zinc-dependent mitochondrial protease fromS. cerevisiae. Mol. Biol. Cell7: 307–317.PubMedGoogle Scholar
  60. 59.
    Campbell C. L., Tanaka N., White K. H. and Thorsness, P. E. (1994) Mitochondrial morphological and functional defects in yeast caused byymel are suppressed by mutation of a 26S protease subunit homologue. Mol. Biol. Cell.5: 899–905PubMedGoogle Scholar
  61. 60.
    Thorsness P. E. and Fox T. D. (1993) Nuclear mutations inSaccharomyces cerevisiae that affect the escape of DNA from mitochondria to the nucleus. Genetics134: 21–28PubMedGoogle Scholar
  62. 61.
    Weber E. R., Rooks R. S., Shafer, K. S., Chase J. W. and Thorsness P. E. (1995) Mutations in the mitochondrial ATP synthase gamma subunit suppress a slow-growth phenotype ofyme1 yeast lacking mitochondrial DNA. Genetics140: 435–442PubMedGoogle Scholar
  63. 62.
    Hanekamp T. and Thorsness P. E. (1996) Inactivation ofYME2/RNA12, which encodes an integral inner mitochondrial membrane protein, causes increased escape of DNA from mitochondria to the nucleus inSaccharomyces cerevisiae. Mol. Cell. Biol.16: 2764–2771PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag 1996

Authors and Affiliations

  1. 1.Institut für Physiologische Chemie der Universität MünchenMünchen(Germany)

Personalised recommendations