, Volume 41, Issue 10, pp 1285–1296

Sex determining mechanisms: An evolutionary perspective

  • J. J. Bull


Theories on the evolution of sex determining mechanisms are reviewed for male and female heterogamety, environmental sex determination, and briefly, haplo-diploidy and hermaphroditism. Because of their discrete and well-defined nature, sex determining mechanisms lend themselves to three types of evolutionary questions:what variety occurs and might be expected but does not occur,how do changes occur from one mechanism to another, andwhy do certain changes occur? All three approaches were illustrated for these different sex determining mechanisms. A generality emerging from these studies is that, at the level of selection on the sex ratio, there are no intrinsic problems in evolving from one sex determining mechanism to another: straightforward transitions between different mechanisms exist under various conditions.

Key words

Sex sex determination sex ratio evolution animals genetics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aida T., Sex reversal inAplocheilus latipes and a new explanation of sex differentiation. Genetica21 (1936) 136–153.Google Scholar
  2. 2.
    Avtalion, R.R., and Hammerman, I.S., Sex determination inSarotherodon (Tilapia) I. Introduction to a theory of autosomal influence. Bamidgeh30 (1978) 110–115.Google Scholar
  3. 3.
    Bacci, G., Sex Determination, Pergamon Press, Oxford 1965.Google Scholar
  4. 4.
    Baker, B.S., and Ridge, K.A., Sex and the single cell. I. On the action of major loci affecting sex determination inDrosophila melanogaster. Genetics94 (1980) 383–423.Google Scholar
  5. 5.
    Baltzer, F., Über die Entwicklungsgeschichte vonBonellia. Verh. dt. zool. Ges.22 (1912) 252–261. (Cited from Leutert43).Google Scholar
  6. 6.
    Beermann, W., Geschlechtsbestimmung und Evolution der genetischen Y-Chromosomen beiChironomus. Biol. Zbl.74 (1955) 525–544.Google Scholar
  7. 7.
    Bell, G., The Masterpiece of Nature. The Evolution and Genetics of Sexuality. University of California Press, Los Angeles 1982.Google Scholar
  8. 8.
    Bridges, C.B., Non-disjunction as proof of the chromosome theory of heredity. Genetics1 (1916) 1–52, 107–163.Google Scholar
  9. 9.
    Bridges, C.B., Sex in relation to genes and chromosomes. Am. Nat.59 (1925) 127–137.Google Scholar
  10. 10.
    Bull, J.J., An advantage for the evolution of male halploidy and systems with similar genetic transmission. Heredity43 (1979) 361–381.Google Scholar
  11. 11.
    Bull, J.J., Sex determination in reptiles. Q. Rev. Biol.55 (1980) 3–21.Google Scholar
  12. 12.
    Bull, J.J., Sex ratio evolution when fitness varies. Heredity46 (1981) 9–26.Google Scholar
  13. 13.
    Bull, J.J., Evolution of sex determining mechanisms. Benjamin/Cummings, California 1983.Google Scholar
  14. 14.
    Bull, J.J., and Charnov, E.L., Changes in the heterogametic mechanism of sex determination. Heredity39 (1977) 1–14.Google Scholar
  15. 15.
    Bulmer, M.G., and Bull, J.J., Models of polygenic sex determination and sex ratio evolution. Evolution36 (1982) 13–26.Google Scholar
  16. 16.
    Bulnheim, H.-P., Interaction between genetic, external and parasitic factors in sex determination of the crustacean amphipodGammarus duebeni. Helgoländer wiss. Meeresunters.31 (1978) 1–33.Google Scholar
  17. 17.
    Caullery, M., and Comas, M., Le déterminisme du sexe chez un nématode (Paramermis contorta), parasite des larves desChironomus. C.r. Acad. Sci. Paris186 (1928) 646–648.Google Scholar
  18. 18.
    Charlesworth, D., and Charlesworth, B., Sex differences in fitness and selection for contric fusions between sex-chromosomes and autosomes. Genet. Res.35 (1980) 205–214.Google Scholar
  19. 19.
    Charnier, M., Action de la température sur la sex-ratio chez l'embryon d'Agama agama (Agamidae, Lacertilien) Soc. biol. Ouestt Afr.160 (1966) 620–622.Google Scholar
  20. 20.
    Charnov, E.L., The Theory of Sex Allocation. Princeton Univ. Press, Princeton, New Jersey 1982.Google Scholar
  21. 21.
    Charnov, E.L., and Bull, J.J., When is sex environmentally determined? Nature266 (1977) 828–830.Google Scholar
  22. 22.
    Christie, J.R., Some observations on sex in the Mermithidae. J. exp. Zool.53 (1929) 59–76.Google Scholar
  23. 23.
    Cline, T.W., A male-specific lethal mutation inDrosophila melanogaster that transforms sex. Devl Biol.72 (1979) 266–275.Google Scholar
  24. 24.
    Conover, D.O., Adaptive significance of temperature-dependent sex determination in a fish. Am. Nat.123 (1983) 297–313.Google Scholar
  25. 25.
    Conover, D.O., and Kynard, B.E., Environmental sex determination: Interaction of temperature and genotype in a fish. Science213 (1981) 577–579.Google Scholar
  26. 26.
    Cotterman, C.W., Regular two-allele and three-allele phenotype systems. Am. J. hum. Genet.5 (1953) 193–235.Google Scholar
  27. 27.
    Craig, G.B., Genetic control of thermally-induced sex reversal inAedes aegypti, in: Proc. XIIth Int. Congr. of Ent., Lond. p. 263. Ed. P. Freeman. R. ent. Soc., London 1965.Google Scholar
  28. 28.
    Crew, F.A.E. Sex Determination. 4th Edn. Methuen & Co. Ltd. Reprinted: Dover, New York 1965.Google Scholar
  29. 29.
    Crozier, R.H., Evolutionary genetics of the Hymenoptera. A. Rev. Ent.22 (1977) 263–288.Google Scholar
  30. 30.
    Dournon, C., and Houllion, C., Déterminisme génétique du sexe: démonstration à partir d'animaux à phenotype sexuel inverse sous l'action de la tempèrature chez l'Amphibian UrodelePleurodeles waltlii Michah. C.r. Acad. Sci. Paris296 (1983) 770–782.Google Scholar
  31. 31.
    Eicher, E.M., Primary sex determining genes in mice: a brief review, in: Prospects for sexing mammalian sperm, pp. 121–135. Eds. R.P. Amann and G.E. Seidel. Colorado Associated Univ. Press, Colorado 1982.Google Scholar
  32. 32.
    Fisher, R.A., The Genetical Theory of Natural Selection. Dover Reprint (1958), New York 1930.Google Scholar
  33. 33.
    Fredga, K., Gropp, A., Winking, H., and Frank, F., A hypothesis explaning the exceptional sex ratio in the wood lemming (Myopus schisticolor). Hereditas85 (1977) 101–104.Google Scholar
  34. 34.
    Gileva, E.A., Chromosomal diversity and an aberrant genetic system of sex determination in the Arctic lemming,Dicrostonyx torquatus Pallas (1779). Genetica52/53 (1980) 99–103.Google Scholar
  35. 35.
    Gutzke, W.H.N., and Paukstis, G.L., Influence of the hydric environment on sexual differentiation of turtles. J. exp. Zool.226 (1983) 467–469.Google Scholar
  36. 36.
    Hartl, D.L., and Brown, S.W., The origin of male haploid genetic systems and their expected sex ratio. Theor Pop. Biol.1 (1970) 165–190.Google Scholar
  37. 37.
    Hiroyoshi, T., Sex limited inheritance and abnormal sex ratio in strains of the bousefly. Genetics50 (1964) 373–385.Google Scholar
  38. 38.
    Hodgkin, J., More sex determination mutants ofCaenorhabditis elegans. Genetics96 (1980) 649–664.Google Scholar
  39. 39.
    Kallmann, K.D., Evidence for the existence of transformer genes for sex in the teleostXiphophorus maculatus. Genetics60 (1968) 811–828.Google Scholar
  40. 40.
    Kallman, K.D., A new look at sex determination in poecillid fishes, in: Evolutionary genetics of fishes, pp. 95–171. Ed. B.J. Turner. Plenum Publ. Corp. New York 1984.Google Scholar
  41. 41.
    Kerr, R.W., Inheritance of DDT resistance in a laboratory colony of the housefly,Musca domestica. Aust. J. biol. Sci.23 (1970) 377–400.Google Scholar
  42. 42.
    King, M., The evolution of sex chromosomes in lizards, in: Evolution and Reproduction, pp. 55–60. Eds J. Calaby and H. Tyndale-Briscoe. Aust. Acad. Sci., Canberra 1977.Google Scholar
  43. 43.
    Leutert, R., Sex detemination inBonellia, in: Intersexuality in the Animal Kingdom, pp. 84–90. Ed. R. Rienboth. Springer-Verlag, Berlin 1975.Google Scholar
  44. 44.
    Lloyd, D.G., Theoretical sex ratios of dioecious and gynodioecious angiosperms. Heredity32 (1974) 11–34.Google Scholar
  45. 45.
    Martin, J., Kuvangkadilok, C., Peart, D.H., and Lee, B.T.O., Multiple sex determining regions in a group of relatedChironomus species (Diptera: Chironomidae). Heredity44 (1980) 367–382.Google Scholar
  46. 46.
    McDonald, I.C., Evenson, P., Nickel, C.A., and Johnson, O.A., House fly genetics: Isolation of a female determining factor on chromosome 4. Ann. ent. Soc.71 (1978) 692–694.Google Scholar
  47. 47.
    Milani, R., The house fly,Musca domestica, in: Handbook of genetics, vol. 3: Invertebrates of genetic interest, pp. 377–399. Ed. R.C. King. Plenum Press, New York 1975.Google Scholar
  48. 48.
    Mittwoch, U., Sex chromosomes. Academic Press, New York 1967.Google Scholar
  49. 49.
    Mittwoch, U., Genetics of sex differentiation. Academic Press, New York 1973.Google Scholar
  50. 50.
    Mrosovsky, N., Thermal biology of sea turtles. Am. Zool.20 (1980) 531–547.Google Scholar
  51. 51.
    Nakamura, D., Wachtel, S.S., and Kallman, K., H-Y antigen and the evolution of heterogamety. J. Hered.75 (1984) 353–358.Google Scholar
  52. 52.
    Ohno, S., Sex Chromosomes and Sex-Linked Genes. Springer-Verlag, Berlin 1967.Google Scholar
  53. 53.
    Ohno, S., Major Sex-Determining Genes. Springer-Verlag, Berlin 1979.Google Scholar
  54. 54.
    Oliver, J.H. Jr, Parthenogenesis in mites and ticks. Am. Zool.11 (1971) 283–299.Google Scholar
  55. 55.
    Oliver, J.H. Jr, Cytogenetics of mites and ticks. A. Rev. Ent.22 (1977) 407–429.Google Scholar
  56. 56.
    Orzack, S.H., Sohn, J.J., Kallman, K.D., Levin, S.A., and Johnston, R., Maintenance of the three sex chromosome polymorphism in the platyfish,Xiphophorus maculatus. Evolution34 (1980) 663–672.Google Scholar
  57. 57.
    Packard, G.C., Packard, M.J., Boardman, T.J., and Ashen, M.D., Possible adaptive value of water exchanges in flexible-shelled eggs of turtles. Science213 (1981) 471–473.Google Scholar
  58. 58.
    Petersen, J.J., Effects of host size and parasite burden on sex ratio in the mosquito parasiteOctomymermis muspratti. J. Nemat.9 (1977) 343–346.Google Scholar
  59. 59.
    Pieau, C., Sur la proportion sexuelle chez les embryons de deux Cheloniens (Testudo graeca L. etEmys orbicularis L.) issus d'œufs incubes artificiellemnt. C.r. Acad. Sci. Paris (D)272 (1971) 3071–3074.Google Scholar
  60. 60.
    Pieau, C., Effects de la température sur le développement des glandes génitales chez les embryons de deux Cheloniens,Emys orbicularis L. etTestudo graeca L. C.r. Acad. Sci. Paris (D)274 (1972) 719–722.Google Scholar
  61. 61.
    Pieau, C., Sur la différenciation sexuelle chez des embryons d'Emys orbicularis L. (Chelonien) issues d'œufs incubés dans le sol au cours de l'été 1973. Bull. Soc. zool. Fr.99 (1974) 363–376.Google Scholar
  62. 62.
    Pieau, C., Temperature and sex differentiation in embryos of two chelonians,Emys orbicularis L. andTestudo graca, L., in: Intersexuality in the Animal Kingdom, pp. 332–339. Ed. R. Reinboth. Springer-Verlag, Berlin 1975.Google Scholar
  63. 63.
    Pieau, C., Effects des variations thermiques sur la différentiation du sexe chez les vertébrés. Bull. Soc. zool. Fr.100 (1975b) 67–76.Google Scholar
  64. 64.
    Pieau, C., Modalities of the action of temperature on sexual differentiation in field-developing embryos of the European pond turtleEmys orbicularis (Emydidae). J. exp. Zool.220 (1982) 353–360.Google Scholar
  65. 65.
    Richards, C.M., and Nace, G.W., Gynogenetic and hormonal sex reversal used in the tests of the XX-XY hypothesis of sex determination inRana pipiens. Growth42 (1978) 319–331.Google Scholar
  66. 66.
    Rubin, D.A., Effect of pH on sex ratio in cichlids and poecillids (Teleostei) Copeia (1985) 233–235.Google Scholar
  67. 67.
    Rubini, P.G., Franco, M.G., and Vanossi Este, S., Polymorphisms for heterochromosomes and autosomal sex-determinants inMusca domestica L. Atti. IX Congr. ital. Ent.1972 342–352.Google Scholar
  68. 68.
    Schmid, M., Evolution of sex chromomes and heterogametic systems in Amphibia. Differentiation23S (1983) S13-S22.Google Scholar
  69. 69.
    Schrader, F., and Hughes-Schrader, S., Haploidy in metazoa. Q. Rev. Biol.6 (1931) 411–438.Google Scholar
  70. 70.
    Scudo, F.M., Sex population genetics. Ricerca scient.34 II-B (1964) 93–146.Google Scholar
  71. 71.
    Scudo, F.M., Criteria for the analysis of multifactorial sex determination. Monitore zool. ital.1 (1967) 1–21.Google Scholar
  72. 72.
    Thompson, P.E., and Bowen, I.S., Interactions of differentiated primary sex factors inChironomus tentans. Genetics70 (1972) 491–493.Google Scholar
  73. 73.
    Trivers, R.L., and Willard, D.E., Natural selection of parental ability to vary the sex ratio of offspring. Science179 (1973) 90–92.Google Scholar
  74. 74.
    Vogt, R.C., and Bull, J.J., Ecology of hatchling sex ratio in map turtles. Ecology65 (1984) 582–587.Google Scholar
  75. 75.
    Wachtel, S.S., H-Y antigen and the biology of sex determination. Grune and Stratton, New York 1983.Google Scholar
  76. 76.
    Westergaard, M., The mechanism of sex determination in dioecious flowering plants. Adv. Genet.9 (1958) 217–281.Google Scholar
  77. 77.
    White, M.J.D., Animal Cytology and Evolution, 3rd Edn. Cambridge Univ. Press Cambridtge 1973.Google Scholar
  78. 78.
    Whiting, P.W., The evolution of male haploidy. Q. Rev. Biol.20 (1945) 231–260.Google Scholar
  79. 79.
    Yntema, C.L., Effects of incubation temperatures on sexual differentiation in the turtle,Chelydra serpentina. J. Morph.150 (1976) 453–462.Google Scholar

Copyright information

© Birkhäuser Verlag Basel 1985

Authors and Affiliations

  • J. J. Bull
    • 1
  1. 1.Dept. of ZoologyUniversity of TexasAustinUSA

Personalised recommendations