Advertisement

Acta Mathematica Hungarica

, Volume 54, Issue 3–4, pp 237–241 | Cite as

Comment ecrire les nombres entiers dans une base qui n'est pas entiere

  • Anne Bertrand-Mathis
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    A. Rényi, Representations for real numbers and their ergodic properties,Acta Math. Acad. Sci. Hung.,8 (1957), 477–493.Google Scholar
  2. [2]
    W. Parry, On the β expansions of real numbers,Acta Math. Acad. Sci. Hungar. 11 (1960), 401–416.Google Scholar
  3. [3]
    A. Bertrand-Mathis, Développements en base θ et répartition modulo 1,Bulletin de la S. M. F. (1986).Google Scholar
  4. [4]
    A. Bertrand-Mathis, Points génériques pour la mesure de Champernowne sur certains systèmes codés. A pariatre auJournal de Théorie ergodique.Google Scholar
  5. [5]
    A. Bertrand-Mathis, Le θ-shift sans peine. En préparation.Google Scholar
  6. [6]
    Ito-Shiokawa, A construction of β-normal sequence,J. Math. Soc. Japan,27 (1975).Google Scholar
  7. [7]
    Ito-Takahasni, Markov subshift and realisation of β-expansions.J. Math. Soc. Japan,26 (1974).Google Scholar
  8. [8]
    F. Hofbauer, β-shift have unique maximal measure,Monatshefte für Mathematik,85 (1978), 189–198.CrossRefGoogle Scholar
  9. [9]
    D. Champernowne, The construction of decimal normal in the scale of ten,J. of London Math. Soc.,8 (1950), 254–260.Google Scholar
  10. [10]
    A. S. Fraenkel, Systems of numeration,Amer. Math. Monthly,92 (1985), 105–114.Google Scholar

Copyright information

© Akadémia Kiadó 1989

Authors and Affiliations

  • Anne Bertrand-Mathis
    • 1
  1. 1.Department de MathematiquesUniversité de Bordeaux ITalenceFrance

Personalised recommendations