Experientia

, Volume 45, Issue 11–12, pp 1047–1055

Physical methods for characterization of microbial cell surfaces

  • C. Krekeler
  • H. Ziehr
  • J. Klein
Multi-Author Review

Summary

There are different concepts for explaining the adsorption of microorganisms to solid surfaces: the DLVO theory and the surface free energy. Basic aspects of both theories are discussed. Established methods for determining the surface properties of microbial cells are reviewed: Electrophoretic mobility, colloid titration, electrostatic interaction chromatography, bacterial adherence to hydrocarbons, partitioning in an aqueous two-phase system, hydrophobic interaction chromatography, contact angle measurement and X-ray photoelectron spectroscopy. They are discussed and classified according to their potential for the correlation of cell surface characteristics and adsorption behavior.

Key words

Cell surface characterization surface charge hydrophobicity chemical analysis adsorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbott, A., Rutter, P. R., and Berkeley, R. C. W., The influence of ionic strength, pH and a protein layer on the interaction betweenStreptococcus mutans and glass surfaces. J. gen. Microbiol.129 (1983) 439–445.Google Scholar
  2. 2.
    Absolom, D. R., van Oss, C. J., Genco, R. J., Francis, D. W., and Neumann, A. W., Surface thermodynamics of normal and pathological human granulocytes. Cell Biophys.2 (1980) 113–126.Google Scholar
  3. 3.
    Absolom, D. R., Zingg, W., Thomson, C., Policova, Z., van Oss, C. J., and Neumann, A. W., Erythrocyte adhesion to polymer surfaces. J. Colloid Interface Sci.104 (1985) 51–59.Google Scholar
  4. 4.
    Absolom, D. R., Neumann, A. W., Zingg, W., and van Oss, C. J., Thermodynamic studies of cellular adhesion. Trans. Am. Soc. artif. intern. Organs25 (1979) 152–156.Google Scholar
  5. 5.
    Adamson, A. W. (Ed.), Physical Chemistry of Surfaces. Interscience Publishers, John Wiley & Sons, New York 1960.Google Scholar
  6. 6.
    Amory, D. E., Mozes, N., Hermesse, M. P., Leonard, A. J., and Rouxhet, P. G., Chemical analysis of the surface of microorganisms by x-ray photoelectron spectroscopy. FEMS Microbiol. Lett.49 (1988) 107–110.Google Scholar
  7. 7.
    Amory, D. E., and Rouxhet, P. G., Surface properties ofSaccharomyces cerevisiae andSaccharomyces carlsbergensis: chemical composition, electrostatic charge and hydrophobicity. Biochim. biophys. Acta938 (1988) 61–70.Google Scholar
  8. 8.
    Andrade, J. D. (Ed.), X-ray photoelectron spectroscopy (XPS), in: Surface and Interfacial Aspects of Biomedical Polymers, vol. 1, p. 105–179. Plenum Press, New York, London 1983.Google Scholar
  9. 9.
    Andrade, J. D., Smith, L. M., and Gregonis, D. E., The contact angle and interface energetics, in: Surface and Interfacial Aspects of Biomedical Polymers, vol. 1, p. 249–292. Ed. J. D. Andrade. Plenum Press, New York, London 1983.Google Scholar
  10. 10.
    Barclay, L., Harrington, A., and Ottewill, R. H., The measurement of forces between particles in disperse systems. Kolloid-Z. and Z. Polymere250 (1972) 655–666.Google Scholar
  11. 11.
    Brinton, C. C. Jr., Buzzell, A., Lauffer, M. A., Electrophoresis and phage susceptibility studies on a filament-producing variant of theE. coli B bacterium. Biochim. biophys. Acta15 (1954) 533–542.Google Scholar
  12. 12.
    Brinton, C. C. Jr, and Lauffer, M. A., The electrophoresis of viruses, bacteria, and cells, and the microscope method of electrophoresis, in: Electrophoresis, Theory, Methods, and Applications, chap. 10, p. 427–492. Ed. M. Bier. Academic Press Inc., Publishers New York 1959.Google Scholar
  13. 13.
    Büchs, J., Mozes, N., Wandrey, C., and Rouxhet, P. G., Cell adsorption control by culture conditions, Influence of phosphate on surface properties, flocculation and adsorption behaviour ofCorynebacterium glutamicum. Appl. Microbiol. Biotech.29 (1988) 119–128.Google Scholar
  14. 14.
    Büchs, J., and Wandrey, C., Oberflächenmodifiziertes Sinterglas-ein geeigneter Träger für aerobe Mikroorganismen. Verfahrenstechnische Aspekte der Immobilisierung von Enzymen und ganzen Zellen, GVC VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen, 9.-10.5.88, Heidelberg 1988.Google Scholar
  15. 15.
    Busscher, H. J., van Pelt, A. W. J., de Jong, H. P., and Arends, J., Effect of spereading pressure on surface free energy determination by means of contact angle measurements. J. Colloid Interface Sci.95 (1983) 23–27.Google Scholar
  16. 16.
    Busscher, H. J., Weerkamp, A. H., van der Mei, H. C., van Pelt, A. W. J., de Jong, H. P., and Arends, J., Measurement of the surface free energy of bacterial cell surfaces and its relevance for adhesion. Appl. envir. Microbiol.48 (1984) 980–983.Google Scholar
  17. 17.
    Busscher, H. J., Uyen, M. H. M. J. C., Weerkamp, A. H., Postma, W. J., and Arends, J., Reversibility of adhesion of oral streptococci to solids. FEMS Microbiol. Lett.35 (1986) 303–306.Google Scholar
  18. 18.
    Champluvier, B., Kamp, B., and Rouxhet, P. G., Immobilization of β-galactosidase retained in yeast: adhesion of the cells on a support. Appl. Microbiol. Biotech.27 (1988) 464–469.Google Scholar
  19. 19.
    Cunningham, R. K., Söderström, T. O., Gillman, C. F., and van Oss, C. J., Phagocytosis as a surface phenomenon, V. Contact angles and phagocytosis of rough and smooth strains of Salmoneella typhimurium, and the influence of specific antiserum. Immun. Commun.4 (1975) 429–442.Google Scholar
  20. 20.
    Curtis, A. S. G. (Ed.), The Cell Surface: Its Molecular Role in Morphogenesis. Logos Press, Academic Press 1967.Google Scholar
  21. 21.
    Dahlbäck, B., Hermansson, M., Kjelleberg, S., and Norkarans, B., The hydrophobicity of bacteria — an important factor in their initial adhesion at the air-water interface. Archs. Microbiol.128 (1981) 267–270.Google Scholar
  22. 22.
    Darnell, K. R., Hart, M. E., and Champlin, F. R., Variability of cell surface hydrophobicity amongPasteurella multocida somatic serotype andActinobacillus lignieresii strains. J. clin. Microbiol.25 (1987) 67–71.Google Scholar
  23. 23.
    Dolowy, K., A physical theory of cell-cell and cell-substratum interactions, in: Cell Adhesion and Mobility, p. 39–63. Eds A. S. G. Curtis and J. D. Pitts. The Third Symposium of the British Society for Cell Biology, Cambridge University Press 1980.Google Scholar
  24. 24.
    Fattom, A., and Shilo, M., Hydrophobicity as an adhesion mechanism of benthic cyanobacteria. Appl. envir. Microbiol.47 (1984) 135–143.Google Scholar
  25. 25.
    Fisher, D. J., and Richmond, D. V., The electrokinetic properties of some fungal spores. J. gen. Microbiol.57 (1969) 51–60.Google Scholar
  26. 26.
    Gittens, G. J., and James, A. M., Some physical investigations of the behaviour of bacterial surfaces, VI. Chemical modification of surface components. Biochim. biophys. Acta66 (1963) 237–249.Google Scholar
  27. 27.
    Gerson, D. F., Cell surface energy, contact angles and phase partition, I. Lymphocytic cell lines in biphasic aqueous mixtures. Biochim. biophys. Acta602 (1980) 269–280.Google Scholar
  28. 28.
    Gerson, D. F., and Scheer, D., Cell surface energy, contact angles and phase partition, III. Adhesion of bacterial cells to hydrophobic surfaces. Biochim. biophys. Acta602 (1980) 506–510.Google Scholar
  29. 29.
    Good, R. J., Surface free energy of solids and liquids: Thermodynamics, molecular forces, and structure. J. Colloid Interface Sci.59 (1977) 398–419.Google Scholar
  30. 30.
    Good, R. J., Contact angles and the surface free energy of solids, in: Surface and Colloid Science, vol. 11, p. 1–29. Eds R. J. Good and R. R. Stromberg. Plenum Press 1979.Google Scholar
  31. 31.
    Hahn-Hägerdal, B., Hosono, K., Zachrisson, A., and Bornman, C. H., Polyethylene glycol and electric field treatment of plant protoplasts: Characterization of some membrane properties. Physiol. Plant67 (1986) 359–364.Google Scholar
  32. 32.
    Harden, V. P., and Harris, J. O., The isoelectric point of bacterial cells. J. Bact.65 (1953) 198–202.Google Scholar
  33. 33.
    Hazen, K. C., Plotkin, B. J., and Klimas, D. M., Influence of growth conditions on the cell surface hydrophobicity ofCandida albicans andCandida glabrata, Infect. Immun.54 (1986) 269–271.Google Scholar
  34. 34.
    Hermansson, M., Kjelleberg, S., Korhonen, T.K., and Stenström, T. A., Hydrophobic and electrostatic characterization of surface structures of bacteria and its relationship to adhesion to an air-water interface. Archs Microbiol.131 (1982) 308–312.Google Scholar
  35. 35.
    Hjertén, St., Rosengren, J., and Påhlman, S., Hydrophobic interaction chromatography, The synthesis and the use of some alkyl and aryl derivates of agarose. J. Chromat.101 (1974) 281–288.Google Scholar
  36. 36.
    Horn, D., Optisches Zweistrahlverfahren zur Bestimmung von Polyelektrolyten in Wasser und zur Messung der Polymeradsorption an Grenzflächen. Progr. Colloid Polymer Sci.65 (1978) 251–264.Google Scholar
  37. 37.
    Horn, D., Die Bestimmung der Ladungsdichte organischer Polyelektrolyte. Beitrag zum GDCh-Informationstag Nr. 553/83, Polyelektrolyte — Struktur und Charakterisierung einer wichtigen Stoffklasse der wasserlöslichen Polymere, Mai 83, Frankfurt/Main.Google Scholar
  38. 38.
    Horn, D., and Heuck, C.-Chr., Charge determination of proteins with polyelectrolyte titration. J. biol. Chem.258 (1983) 1665–1670.Google Scholar
  39. 39.
    Hubert, M., and Werner, U., Die Oberflächenladung von Mikroorganismen — eine neue neue Messgrösse zur Führung biotechnologischer Prozesse?. vt «Verfahrenstechnik»17 (1983) 19–22.Google Scholar
  40. 40.
    James, A. M., The electrochemistry of the bacterial surface. Progr. Biophys. biophys. Chem.8 (1957) 96–142.Google Scholar
  41. 41.
    James, A. M., Electrophoresis of particles in suspension, in: Surface and Colloid Science, vol. 11, p. 121–185. Eds R. J. Good and R. R. Stromberg. Plenum Press, 1979.Google Scholar
  42. 42.
    James, A. M., and List, C. F., Some physical investigations of the behaviour of bacterial surfaces, XII. The effect of fimbriae on the electrophoretic mobility of some capsular and non-capsular bacteria of the coli-aerogenes group. Biochim. biophys. Acta112 (1966) 307–317.Google Scholar
  43. 43.
    Kaeppeli, O., and Fiechter, A., The mode of interaction between the substrate and cell surface of the hydrocarbon-utilizing yeastCandiada tropicalis. Biotech. Bioeng.18 (1976) 967–974.Google Scholar
  44. 44.
    Kjelleberg, S., Lagercrantz, C., and Larsson, Th., Quantitative analysis of bacterial hydrophobicity studied by the binding of dodecanoic acid. FEMS Microbiol. Lett.7 (1980) 41–44.Google Scholar
  45. 45.
    Kjelleberg, S., and Hermansson, M. Starvation-induced effects on bacterial surface characteristics. Appl. envir. Microbiol.48 (1984) 497–503.Google Scholar
  46. 46.
    Kosaric, N., Mahoney, E. M., Varangu, L. K., and Cairus, W. L., Cell surface and aggregation studies of microbes from anaerobic systems. Water Poll. Res. J. Canada22 (1987) 289–297.Google Scholar
  47. 47.
    Lerche, C., Electrophoresis ofMicrococcus pyogenes aureus. Acta path. microbiol. scand., Suppl. 94–98 (1953) 1–194.Google Scholar
  48. 48.
    Lyklema, J., Interfacial electrochemistry of surfaces with biomedical relevance, in: Surface and Interfacial Aspects of Biomedical Polymers, vol. 1, p. 293–336. Ed. J. D. Andrade. Plenum Press, 1983.Google Scholar
  49. 49.
    Marshall, K. C. (Ed.), Interfaces in Microbial Ecology. Harvard University Press, 1976.Google Scholar
  50. 50.
    Minagi, S., Miyake, Y., Inagaki, K., Tsuru, H., and Suginaka, H., Hydrophobic interaction inCandida albicans andCandida tropicalis adherence to various denture base resin materials. Infect. Immun.47 (1985) 11–14.Google Scholar
  51. 51.
    Miyake, Y., Fujita, Y., Minagi, S., and Suginaka, H., Surface hydrophobicity and adherence ofCandida to acrylic surfaces. Microbios46 (1986) 7–14.Google Scholar
  52. 52.
    Moyer, L. S., Changes in the electrokinetic potential of bacteria at various phases of the culture cycle. J. Bact.32 (1936) 433–464.Google Scholar
  53. 53.
    Mozes, N., Marchal, F., Hermesse, M. P., van Haecht, J. L., Reuliaux, L., Léonard, A. J., and Rouxhet, P. G., Immobilization of microorganisms by adhesion: interplay of electrostatic and nonelectrostatic interactions. Biotechn. Bioeng.29 (1987) 439–450.Google Scholar
  54. 54.
    Mozes, N., and Rouxhet, P. G., Methods for measuring hydrophobicity of microorganisms. J. microbiol. Meth.6 (1987) 99–112.Google Scholar
  55. 55.
    Neihof, R., and Echols, W. H., Physicochemical studies of microbial cell walls, I. Comparative electrophoretic behavior of intact cells and isolated cell walls. Biochim. biophys. Acta318 (1973) 23–32.Google Scholar
  56. 56.
    Nesbitt, W. E., Doyle, R. J., and Taylor, K. G., Hydrophobic interactions and the adherence ofStreptococcus sanguis to hydroxylapatite. Infect. Immun.38 (1982) 637–644.Google Scholar
  57. 57.
    Neufeld, R. J., Zajic, J. E., and Gerson, D. F., Cell surface measurements in hydrocarbon and carbohydrate fermentations. Appl. envir. Microbiol.39 (1980) 511–517.Google Scholar
  58. 58.
    Neumann, A. W., Good, R. J., Hope, C. J., and Sejpal, M., An equation-of-state approach to determine surface tensions of low-energy solids from contact angles. J. Colloid Interface Sci.49 (1974) 291–304.Google Scholar
  59. 59.
    Neumann, A. W., Absolom, D. R., van Oss, C. J., and Zingg, W., Surface thermodynamics of leukocyte and platelet adhesion to polymer surfaces. Cell Biophys.1 (1979) 79–92.Google Scholar
  60. 60.
    Neumann, A. W., and Good, R. J., Techniques of measuring contact angles, in: Surface and Colloid Science, vol. 11, p. 31–39. Eds R. J. Good and R. R. stromberg. Plenum Press, 1979.Google Scholar
  61. 61.
    Neumann, A. W., Absolom, D. R., Francis, D. W., and van Oss, C. J., Conversion tables of contact angles to surface tensions. Separ. Purif. Meth.9 (1980) 69–163.Google Scholar
  62. 62.
    Neumann, A. W., Hum, O. S., Francis, D. W., Zingg, W., and van Oss, C. J., Kinetic and thermodynamic aspects of platelet adhesion from suspension to various substrates. J. biomed. Mat. Res.14 (1980) 499–509.Google Scholar
  63. 63.
    Noda, Y., Katayama, T., and Kanemasa, Y., Determination of surface charge ofMicrococcus luteus by colloid titration. Physiol. Chem. phys. Med. NMR16 (1984) 29–34.Google Scholar
  64. 64.
    Ofek, I., Whitnack, E., and Beachey, E. H., Hydrophobic interactions of group A streptococci with hexadecane droplets. J. Bact.154 (1983) 139–145.Google Scholar
  65. 65.
    Overbeek, J. Th. G., and Lijklema, J., Electric potentials in colloid systems, in: Electrophoresis, Theory, Methods, and Applications, p. 1–33. Ed. M. Bier. Academic Press Inc., 1959.Google Scholar
  66. 66.
    Pedersen, K., Electrostatic interaction chromatography, a method for assaying the relative surface charges of bacteria. FEMS Microbiol. Lett.12 (1980) 365–367.Google Scholar
  67. 67.
    Rosenberg, M., Gutnick, D., and Rosenberg, E., Adherence of bacteria to hydrocarbons: A simple method for measuring cell-surface hydrophobicity. FEMS Microbiol. Lett.9 (1980) 29–33.Google Scholar
  68. 68.
    Rosenberg, M., Perry, A., Bayer, E. A., Gutnick, D. L., Rosenberg, E., and Ofek, I., Adherence ofAcinetobacter calcoaceticus RAG-1 to human epithelial cells and to hexadecane. Infect. Immun.33 (1981) 29–33.Google Scholar
  69. 69.
    Rosenberg, M., Judes, H., and Weiss, E., Cell surface hydrophobicity of dental plaque microorganisms in situ. Infect. Immun.42 (1983) 831–834.Google Scholar
  70. 70.
    Rosenberg, M., Bacterial adherence to hydrocarbons: a useful technique for studying cell surface hydrophobicity. FEMS Microbiol. Lett.22 (1984) 289–295.Google Scholar
  71. 71.
    Rosenberg, M., and Kjelleberg, S., Hydrophobic interactions: Role in bacterial adhesion. Adv. Microbial Ecol.9 (1986) 353–393.Google Scholar
  72. 72.
    Rouxhet, P. G., and Mozes, N., Physico-chemical bases of microbial adhesion, in: Anaerobic Digestion: Results of Research and Demonstration Projects, p. 218–229. Eds M. P. Ferranti, G. L. Ferrero and P. L'Hermite. Elsevier Applied Science, 1986.Google Scholar
  73. 73.
    Rutter, P. R., The physical chemistry of the adhesion of bacteria and other cells, in: Cell Adhesion and Mobility, p. 103–135. Eds A. S. G. Curtis and J. D. Pitts. The Third Symposium of the British Society for Cell Biology, Cambridge University Press 1980.Google Scholar
  74. 74.
    Schell, H., and Bernhardt, H., Bestimmung der Ladungskonzentration als Steuergrösse des Flockungsmittelzusatzes (Teil I). Z. Wasser-Abwasser-Forsch.19 (1986) 51–59.Google Scholar
  75. 75.
    Schürch, S., Gerson, D. F., and McIver, D. J. L., Determination of cell/medium interfacial tensions from contact angles in aqueous polymer systems. Biochim. biophys. Acta640 (1981) 557–571.Google Scholar
  76. 76.
    Smyth, C. J., Jonsson, P., Olsson, E., Söderlind, O., Rosengren, J., Hjertén, S., and Wadström, T., Differences in hydrophobic surface characteristics of porcine enteropathogenicEscherichia coli with or without K 88 antigen as revealed by hydrophobic interaction chromatography. Infect. Immun.22 (1978) 462–472.Google Scholar
  77. 77.
    Souto-Padrón, T., and de Souza, W., The surface charge ofTrypanosoma cruzi: Analysis using cell electrophoresis, lectins and ultrastructural cytochemistry. J. submicrosc. Cytol.18 (1986) 701–709.Google Scholar
  78. 78.
    Spelt, J. K., Absolom, D. R., and Neumann, A. W., Solid surface tension: The interpretation of contact angles by the equation of state approach and the theory of surface tension components. Langmuir2 (1986) 620–625.Google Scholar
  79. 79.
    Thonart, Ph., Custinne, M., and Paquot, M., Zeta potential of yeast cells: application in cell immobilization. Enzyme microb. Technol.4 (1982) 191–194.Google Scholar
  80. 80.
    Van der Mei, H. C., Weerkamp, A. H., and Busscher, H. J., A comparison of various methods to determine hydrophobic properties of streptococcal cell surfaces. J. microbiol. Meth.6 (1987) 277–287.Google Scholar
  81. 81.
    Van Haecht, J. L., Defosse, C., van den Bogaert, B., and Rouxhet, P. G., Surface properties of yeast cells: chemical composition by XPS and isoelectric point. Colloids Surf.4 (1982) 343–358.Google Scholar
  82. 82.
    Van Loosdrecht, M. C. M., Lyklema, J., Norde, W., Schraa, G., and Zehnder, A. J. B., The role of bacterial cell wall hydrophobicity in adhesion. Appl. envir. Microbiol.53 (1987) 1893–1897.Google Scholar
  83. 83.
    Van Loosdrecht, M. C. M., Lyklema, J., Norde, W., Schraa, G., and Zehnder, A. J. B., Electrophoretic mobility and hydrophobicity as a measure to predict the initial steps of bacterial adhesion. Appl. envir. Microbiol.53 (1987) 1898–1901.Google Scholar
  84. 84.
    Van Pelt, A. W. J., van der Mei, H. C., Busscher, H., Arends, J., and Weerkamp, A. H., Surface free energies of oral streptococci. FEMS Microbiol. Lett.25 (1984) 279–282.Google Scholar
  85. 85.
    Van Pelt, A. W. J., Weerkamp, A. H., Uyen, M. H. W. J. C., Busscher, H. J., de Jong, H. P., and Arends, J., Adhesion ofStreptococcus sanguis CH 3 to polymers with different surface free energies. Appl. envir. Microbiol.49 (1985) 1270–1275.Google Scholar
  86. 86.
    Ward, C. A., and Neumann, A. W., On the surface thermodynamics of a two-component liquid-vapor-ideal solid system. J. Colloid Interface Sci.49 (1974) 286–290.Google Scholar
  87. 87.
    Weiss, L., and Harlos, J. P., Short-term interactions between cell surfaces. Prog. Surf. Sci.1 (1972) 355–405.Google Scholar
  88. 88.
    Wu, S., Calculation of interfacal tension in polymer systems. J. Polymer Sci.C 34 (1971) 19–30.Google Scholar

Copyright information

© Birkhäuser Verlag 1989

Authors and Affiliations

  • C. Krekeler
    • 1
  • H. Ziehr
    • 1
  • J. Klein
    • 1
  1. 1.GBF, Gesellschaft für Biotechnologische ForschungBraunschweigGermany

Personalised recommendations