Communications in Mathematical Physics

, Volume 83, Issue 1, pp 77–82 | Cite as

The perturbation series for φ 3 4 field theory is divergent

  • C. de Calan
  • V. Rivasseau


We prove in a rigorous way the statement of the title.


Neural Network Statistical Physic Field Theory Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dyson, F.: Phys. Rev.85, 631 (1952)Google Scholar
  2. 2.
    Reed, M., Simon, B.: Methods of modern mathematical physics, Vol. IV, Chapter XII, New York: Academic Press 1978Google Scholar
  3. 3.
    Hepp, K.: Théorie de la renormalisation, p. 194, Berlin: Springer-Verlag, 1969Google Scholar
  4. 4.
    Simon, B.: Large Orders and summability of eigenvalue perturbation theory. A mathematical overview, Proc. of the Sanibel Workshop (1981)Google Scholar
  5. 5.
    Jaffe, A.: commun. Math. Phys.1, 127 (1965)Google Scholar
  6. 6.
    Glimm, J., Jaffe, A.: Fortsch. Phys.21, 327 (1973)Google Scholar
  7. 7.
    Magnen, J., Sénéor, R.: Commun. Math. Phys.56, 237 (1977)Google Scholar
  8. 8.
    Rivasseau, V., Speer, E.: Commun. Math. Phys.72, 293 (1980)Google Scholar
  9. 9.
    de Calan, C., Rivasseau, V.: Local existence of the Borel transform in euclideanφ 44, Commun. Math. Phys.82, 69–100 (1981)Google Scholar
  10. 10.
    't Hooft, G.: Lecture given at the Ettore Majorana School, Erice, Sicily (1977)Google Scholar
  11. 11.
    Zimmermann, W.: Commun. Math. Phys.11, 1 (1968) and15, 208 (1969)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • C. de Calan
    • 1
  • V. Rivasseau
    • 1
  1. 1.Centre de Physique Théorique de l'Ecole PolytechniquePlateau de PalaiseauPalaiseau CedexFrance

Personalised recommendations