Communications in Mathematical Physics

, Volume 83, Issue 1, pp 77–82 | Cite as

The perturbation series for φ34 field theory is divergent

  • C. de Calan
  • V. Rivasseau
Article

Abstract

We prove in a rigorous way the statement of the title.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dyson, F.: Phys. Rev.85, 631 (1952)Google Scholar
  2. 2.
    Reed, M., Simon, B.: Methods of modern mathematical physics, Vol. IV, Chapter XII, New York: Academic Press 1978Google Scholar
  3. 3.
    Hepp, K.: Théorie de la renormalisation, p. 194, Berlin: Springer-Verlag, 1969Google Scholar
  4. 4.
    Simon, B.: Large Orders and summability of eigenvalue perturbation theory. A mathematical overview, Proc. of the Sanibel Workshop (1981)Google Scholar
  5. 5.
    Jaffe, A.: commun. Math. Phys.1, 127 (1965)Google Scholar
  6. 6.
    Glimm, J., Jaffe, A.: Fortsch. Phys.21, 327 (1973)Google Scholar
  7. 7.
    Magnen, J., Sénéor, R.: Commun. Math. Phys.56, 237 (1977)Google Scholar
  8. 8.
    Rivasseau, V., Speer, E.: Commun. Math. Phys.72, 293 (1980)Google Scholar
  9. 9.
    de Calan, C., Rivasseau, V.: Local existence of the Borel transform in euclideanφ 44, Commun. Math. Phys.82, 69–100 (1981)Google Scholar
  10. 10.
    't Hooft, G.: Lecture given at the Ettore Majorana School, Erice, Sicily (1977)Google Scholar
  11. 11.
    Zimmermann, W.: Commun. Math. Phys.11, 1 (1968) and15, 208 (1969)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • C. de Calan
    • 1
  • V. Rivasseau
    • 1
  1. 1.Centre de Physique Théorique de l'Ecole PolytechniquePlateau de PalaiseauPalaiseau CedexFrance

Personalised recommendations