Advertisement

Communications in Mathematical Physics

, Volume 83, Issue 1, pp 31–42 | Cite as

Connections withL P bounds on curvature

  • Karen K. Uhlenbeck
Article

Abstract

We show by means of the implicit function theorem that Coulomb gauges exist for fields over a ball inR n when the integralLn/2 field norm is sufficiently small. We then are able to prove a weak compactness theorem for fields on compact manifolds withL p integral norms bounded,p>n/2.

Keywords

Neural Network Manifold Statistical Physic Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bourguignon, J. P. Lawson, H. B., Jr.: Commun. Math. Phys.79, 189–230 (1981)Google Scholar
  2. 2.
    Hamilton, R.: Harmonic maps of manifolds with boundary. In: Lecture Notes in Mathematics, Vol. 471 Berlin, Heidelberg, New York: Springer 1975Google Scholar
  3. 3.
    Husemoller, D.: Fibre bundles (Chap. 5). In: Graduate Texts in Mathematics, Vol. 20. Berlin, Heidelberg, New York: Springer 1966Google Scholar
  4. 4.
    Morrey, C. B., Jr.: Multiple integrals in the calculus of variations. Berlin, Heidelberg, New York: Springer 1966Google Scholar
  5. 5.
    Palais, R. S.: Foundations of global non-linear analysis. New York: Benjamin, 1968Google Scholar
  6. 6.
    Steenrod, N.: The topology of fibre bundles (Part I). Princeton, New Jersey: Princeton University Press, 1951Google Scholar
  7. 7.
    Taubes, C.: Existence of multimonopole solutions to the static SU (2) Yang-Mills-Higgs equations in the Prasad-Summerfield limit. See Jaffe, A. and Taubes, C., Vortices and Monopoles, Boston: Birkhäuser 1980Google Scholar
  8. 8.
    Uhlenbeck, K.: Removable singularities in Yang-Mills fields, Commun. Math. Phys.83, 11–29 (1982)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Karen K. Uhlenbeck
    • 1
  1. 1.Department of MathematicsUniversity of Illinois at Chicago CircleChicagoUSA

Personalised recommendations