Experientia

, Volume 51, Issue 11, pp 1003–1027 | Cite as

Olfaction in Lepidoptera

  • B. S. Hansson
Reviews

Abstract

Odours play a very important role in the life of insects belonging to the order Lepidoptera. In the present paper, a review is given of the current knowledge of morphology, development and function of the olfactory system in larval and adult moths and butterflies. Research regarding both the antennal and accessory olfactory pathways, as well as both the pheromone and the host odour detecting systems, is reviewed.

Key words

Olfaction olfactory receptor neuron sensillum antenna antennal lobe glomerulus pheromone kairomone host odour Lepidoptera 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akers, R. P., and O'Connell, R. J., The contribution of olfactory receptor neurons to the perception of pheromone component ratios in male redbanded leafroller moths. J. comp. Physiol.A163 (1988) 641–650.CrossRefPubMedGoogle Scholar
  2. 2.
    Akers, R. P., and O'Connell, R. J., Response specificity of male olfactory receptor neurones for the major and minor components of a female pheromone blend. Physiol. Ent.16 (1991) 1–17.Google Scholar
  3. 3.
    Almaas, T. J., Christensen, T. A., and Mustaparta, H., Chemical communication in heliothine moths. 1. Antennal receptor neurons encode several features of intraspecific and interspecific odorants in the male corn earworm mothHelicoverpa zea. J. comp. Physiol.A169 (1991) 249–258.CrossRefGoogle Scholar
  4. 4.
    Almaas, T. J., and Mustaparta, H., Pheromone reception in tobacco budworm moth,Heliothis virescens. J. chem. Ecol.16 (1990) 1331–1347.CrossRefGoogle Scholar
  5. 5.
    Almaas, T. J., and Mustaparta, H.,Heliothis virescens: Response characteristics of receptor neurons in sensilla trichodea type 1 and type 2. J. chem. Ecol.17 (1991) 953–972.CrossRefGoogle Scholar
  6. 6.
    Anderson, P., Hilker, M., Hansson, B. S., Bombosch, S., Klein, B., and Schildknecht, H., Oviposition deterring components in larval frass ofSpodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae): a behavioural and electrophysiological evaluation. J. Insect Physiol.39 (1993) 129–137.CrossRefGoogle Scholar
  7. 7.
    Anton, S., and Hansson, B. S., Central processing of sex pheromone, host odour and oviposition deterrent information by interneurons in the antennal lobe of femaleSpodoptera littoralis (Lepidoptera: Noctuidae). J. comp. Neurol.350 (1994) 199–214.CrossRefPubMedGoogle Scholar
  8. 8.
    Arn, H., Städler, E., and Rauscher, S., The electroantennographic detector a selective and sensitive tool in the gas chromatographic analysis of insect pheromones. Z. Naturf.30c (1975) 722–725.Google Scholar
  9. 9.
    Baker, T. C., Pheromones and flight behaviour, in: Insect Flight. Eds G. G. Goldsworthy and C. Wheeler. CRC Press, Boca Raton, Florida 1988.Google Scholar
  10. 10.
    Baker, T. C., Sex pheromone communication in the Lepidoptera: New research progress. Experientia45 (1989) 248–262.CrossRefGoogle Scholar
  11. 11.
    Baker, T. C., Hansson, B. S., Löfstedt, C., and Löfqvist, J., Adaptation of antennal neurons in moths is associated with cessation of pheromone-mediated upwind flight. Proc. natl Acad. of Sci. USA85 (1988) 9826–9830.Google Scholar
  12. 12.
    Baker, T. C., Hansson, B. S., Löfstedt, C., and Löfqvist, J., Adaptation of male moth antennal neurons in a pheromone plume is associated with cessation of pheromone-mediated flight. Chem. Senses14 (1989) 439–448.Google Scholar
  13. 13.
    Baker, T. C., and Haynes, K. F., Field and laboratory electroantennograhic measurements of pheromone plume structure correlated with oriental fruit moth behaviour. Physiol. Ent.14 (1989) 1–12.Google Scholar
  14. 14.
    Baker, T. C., Willis, M. A., Haynes, K. F., and Phelan, P. L., A pulsed cloud of pheromone elicits upwind flight in male moths. Physiol. Ent.10 (1985) 257–265.Google Scholar
  15. 14a.
    Bartell, R. J., Mechanisms of communication disruption by pheromone in the control of lepidoptera: A review. Physiol. Ent.7 (1982) 353–364.Google Scholar
  16. 15.
    Behan, M., and Schoonhoven, L. M., Chemoreception of an oviposition deterrent associated with eggs, inPieris brassicae. Ent. Expl Appl.24 (1978) 163–179.CrossRefGoogle Scholar
  17. 16.
    Bengtsson, M., Liljefors, T., Hansson, B. S., Löfstedt, C., and Copaja, S. V., Structure-activity relationships for chainshortened analogs of (Z)-5-decenyl acetate, a pheromone component of the turnip mothAgrotis segetum. J. chem. Ecol.16 (1990) 667–684.CrossRefGoogle Scholar
  18. 17.
    Bestmann H. J., Pheromon-Rezeptor-Wechselwirkung bei Insekten. Mitt. dt. Ges. allg. angew. Ent.2 (1981) 242–247.Google Scholar
  19. 18.
    Bestmann H. J., and Vostrowsky, O., Peripheral aspects of olfacto-endocrine interactions. Structure-activity, in: Olfaction and Endocrine Regulation, pp. 253–265. Ed. W. Breipohl. IRL Press, London 1982.Google Scholar
  20. 19.
    Birch M. C., Intrinsic limitations in the use of electroantennograms to bioassay male pheromones in Lepidoptera. Nature233 (1971) 57–58.CrossRefGoogle Scholar
  21. 20.
    Boeckh J., and Boeckh, V., Theshold and odor specificity of pheromone-sensitive neurons in the deutocerebrum ofAntheraea pernyi andA. polyphemus (Saturnidae). J. comp. Physiol.A132 (1979) 235–242.CrossRefGoogle Scholar
  22. 21.
    Boeckh, J., and Tolbert, L. P., Synaptic organization and development of the antennal lobe in insects. Microsc. Res. Tech.24 (1993) 260–280.CrossRefPubMedGoogle Scholar
  23. 22.
    Boekhoff, I., Raming, K., and Breer, H., Pheromone-induce stimulation of inositol-triphosphate formation in insect antennae is mediated by G-proteins. J. comp. Physiol.B160 (1990) 99–103.CrossRefGoogle Scholar
  24. 23.
    Boekhoff, I., Seifert, E., Göggerle, S., Lindemann, M., Krüger, B.-W. and Breer, H., Pheromone-induced secondmessenger signaling in insect antennae. Insect Biochem. molec. Biol.23 (1993) 757–762.CrossRefGoogle Scholar
  25. 24.
    Bogner, F., Boppré, M., Ernst, K., and Boeckh, J., CO2-sensitive receptors on labial palps ofRhodogastria moths (Lepidoptera: Arctiidae): physiology fine-structure and central projections. J. comp. Physiol.A158 (1986) 741–749.CrossRefPubMedGoogle Scholar
  26. 25.
    Boppré, M., Chemically mediated interactions between butterflies. Symp. R. ent. Soc. Lond.11 (1984) 259–275.Google Scholar
  27. 26.
    Breer, H., Olfactory receptor cells: recognition and transduction of chemical signals. Cytotechnology11 (1993) 13–16.CrossRefPubMedGoogle Scholar
  28. 27.
    Bretschneider, F., Über die Gehirne des Eichenspinners und des Seidenspinners (Lasiocampa quercus L. undBombyx mori L.) Jena Z. Naturw. (Zool)60 (1924) 563–570.Google Scholar
  29. 28.
    Buck, L., and Axel, R., A novel multigene family may encode odorant receptors: A molecular basis for odor recognition. Cell65 (1991) 175–187.CrossRefPubMedGoogle Scholar
  30. 29.
    Butenandt, A., Beckmann, R., Stamm, D., and Hecker, E., Über den Sexuallockstoff des Seidenspinners,Bombyx mori. Reindarstellung und Konstitution. Z. Naturf.14b (1959) 283–284.Google Scholar
  31. 30.
    Cardé, R. T., Chemo-orientation in flying insects, in: Chemical Ecology of Insects, pp. 355–383. Eds W. T. Bell and R. T. Cardé. Chapman and Hall, London and New York 1984.Google Scholar
  32. 30a.
    Cardé, R. T., Principles of mating disruption, in: Behavior-Modifying Chemicals for Insect Management: Applications of Pheromones and Other Attractants, pp. 47–71. Eds R. L. Ridgway, R. M. Silverstein and M. N. Inscoe. Marcel Dekker, New York 1990.Google Scholar
  33. 31.
    Christensen, T. A., Geoffrion, S. C., and Hildebrand, J. G., Physiology of interspecific chemical communication inHeliothis moths. Physiol. Ent.15 (1990) 275–283.Google Scholar
  34. 32.
    Christensen T. A., and Hildebrand, J. G., Functions, organization, and physiology of the olfactory pathways in the Lepidopteran brain, in: Arthropod Brain: Its Evolution, Development Structure, and Functions, pp. 457–483. Eds A. P. Gupta. John Wiley & Sons, Inc, New York 1987.Google Scholar
  35. 33.
    Christensen T. A., and Hildebrand J. G., Male-specific, sex pheromone-selective projection neurons in the antennal lobes of the mothManduca sexta. J. comp. Physiol.160 (1987) 553–569.CrossRefGoogle Scholar
  36. 34.
    Christensen, T. A., and Hildebrand, J. G., Frequence coding by central olfactory neurons in the sphinx mothManduca sexta Chem. Senses13 (1988) 123–130.Google Scholar
  37. 35.
    Christensen T. A., Mustaparta H., and Hildebrand J. G., Discrimination of sex pheromone blends in the olfactory system of the moth. Chem. Senses14 (1989) 463–477.Google Scholar
  38. 36.
    Christensen, T. A., Mustaparta, H., and Hildebrand, J. G., chemical communication in heliothine moths. 2. Central processing of intraspecific and interspecific olfactory messages in the male corn earworm mothHelicoverpa zea. J. comp. Physiol.A169 (1991) 259–274.CrossRefGoogle Scholar
  39. 37.
    Christensen, T. A., Waldrop, B. R., Harrow I. D., and Hildebrand, J. G., Local interneurons and information processing in the olfactory glomeruli of the mothManduca sexta. J. comp. Physiol.A173 (1993) 385–299.CrossRefPubMedGoogle Scholar
  40. 38.
    De Boer, G., and Hanson, F. E., Differentiation of roles of chemosensory organs in food discrimination among host and non-host plants by larvae of the tobacco hornworm,Manduca sexta. Physiol. Ent.12 (1987) 387–398.Google Scholar
  41. 39.
    De Kramer, J. J., The electrical circuitry of an olfactory sensillum inAntheraea polyphemus. J. Neurosci.5 (1985) 2484–2493.PubMedGoogle Scholar
  42. 40.
    De Kramer, J. J. and Hemberger, J., The neurobiology of pheromone perception, in: Pheromone, Biochemistry, pp. 433–472. Eds G. D. Prestwich and G. J. Blomquist. Academic Press, New York 1987.Google Scholar
  43. 41.
    Delorme J. D., and Payne T. L., Effects of sensory adaptation, stimulus concentration and olfactory responses to sex pheromone by maleHeliothis zea. J. Georgia ent. Soc.19 (1984) 371–377.Google Scholar
  44. 42.
    Den Otter C. J., Behan M., and Maes F. W., Single cell responses in femalePieris brassicae (Lepidoptera: Pieridae) to plant volatiles and conspecific egg odors. J. Insect Physiol.26 (1980) 465–472.CrossRefGoogle Scholar
  45. 43.
    Den Otter C. J., Schuil H. A., and Sander-van Oosten A., Reception of host-plant odors and female sex pheromone inAdoxophyes orana (Lepidoptera: Tortricidae): Electrophysiology and morphology. Ent. expl Appl.24 (1978) 370–378.Google Scholar
  46. 44.
    Dethier, V. G., Gustation and olfaction in lepidopterous larvae. Biol. Bull.72 (1937) 7–23.Google Scholar
  47. 45.
    Dethier, V. G., The function of the antennal receptors in lepidopterous larvae. Biol. Bull.80 (1941) 403–414.Google Scholar
  48. 46.
    Dethier, V. G., Responses of some olfactory receptors of the eastern tent caterpillar (Malacosoma americanum) to leaves. J. chem. Ecol.6 (1980) 213–220.CrossRefGoogle Scholar
  49. 47.
    Dethier, V. G., and Kuch, J. H., Electrophysiological studies of gustation in lepidopterous larvae. I. comparative sensitivity to sugars, amino acids, and glycosides. Z. vergl. Physiol.72 (1971) 343–363.CrossRefGoogle Scholar
  50. 48.
    Dethier, V. G., and Schoonhoven, L. M., Olfactory coding by lepidopterous larvae. Ent. expl Appl.12 (1969) 535–543.CrossRefGoogle Scholar
  51. 49.
    Engen, T., The biology of olfaction: An introduction. Experientia42 (1986) 211–213.CrossRefPubMedGoogle Scholar
  52. 50.
    Gnatzy W., Mohren W., and Steinbrecht R. A. Pheromone receptors inBombyx mori andAntherea pemyi. II. Morphometric analysis. Cell Tissue Res.235 (1984) 35–42.PubMedGoogle Scholar
  53. 51.
    Grant, A. J., Mankin, R. W., and Mayer, M. S., Neurophysiological responses of pheromone-sensitive receptor neurons on the antenna ofTrichoplusia ni to pulsed and continous stimulation regimens. Chem., Senses14 (1989) 449–462.Google Scholar
  54. 52.
    Grant, A. J., Mayer, M. S., and Mankin, R. W., Responses from sensilla on antennae on maleHeliothis zea to its major pheromone component and two analogs. J. chem. Ecol.15 (1989) 2625–2634.CrossRefGoogle Scholar
  55. 53.
    Grant, A. J., and O'Connell, R. J., Neurophysiological and morphological investigations of pheromone-sensitive sensilla on the antenna of maleTrichoplusia ni. J. Insect Physiol.32 (1986) 503–515.CrossRefGoogle Scholar
  56. 54.
    Grant, A. J., O'Connell, R. J., and Eisner, T., Pheromonemediated sexual selection in the mothUtethesia ornatrix: Olfactory receptor neurons responsive to a male-produced pheromone. J. Insect Behav.2 (1989) 371–383.CrossRefGoogle Scholar
  57. 55.
    Grant, A. J., O'Connell, R. J., and Hammond, A. M., A comparative study of pheromone perception in two species of Noctuid moths. J. Insect Behav.1 (1988) 75–95.CrossRefGoogle Scholar
  58. 56.
    Grant, C. G., Electroantennogram responses to the scent brush secretions of several male moths. Ann. ent. Soc. Am.64 (1971) 1428–1431.Google Scholar
  59. 57.
    Grant, C. G., Brady U. E., and Brand J. M., Male armyworm scent brush secretion: Identification and electroantennogram study of major components. Ann. ent. Soc. Am.65 (1972) 1224–1227.Google Scholar
  60. 58.
    Grula, J., and Taylor, O. R., A micro-morphological and experimental study of the antennae of the sulphur butterflies,Colias eurytheme andC. philodice (Lepidoptera: Pieridae). J. Kansas ent. Soc.53 (1980) 476–484.Google Scholar
  61. 59.
    Hallberg, E., Fine-structural characteristics of the antennal sensilla ofAgrotis segetum (Insecta: Lepidoptera). Cell Tissue Res.218 (1981) 209–218.CrossRefPubMedGoogle Scholar
  62. 60.
    Hallberg, E., Hansson, B. S., and Löfstedt, C., Sensilla and propioceptors, in: Handbook of Zoology, The Lepidoptera. Ed N. P. Christensen. CRC Press, Boca Raton, Florida in press.Google Scholar
  63. 61.
    Hallberg, E., Hansson, B. S., and Steinbrecht, R. A., Morphological characteristics of antennal sensilla in the European cornborerOstrinia nubilalis (Lepidoptera: Pyralidae). Tissue Cell26 (1994) 489–502.CrossRefGoogle Scholar
  64. 62.
    Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J., Improved patch-clamp techniques for high resolution current recordings from cells and cell free membrane patches. Pflügers Arch.391 (1981) 85–100.CrossRefGoogle Scholar
  65. 63.
    Hansen, K., Discrimination and production of disparlure enantiomers by the gypsy and the nun moth. Physiol. Ent.9 (1984) 9–18.Google Scholar
  66. 64.
    Hansen, K., Schneider, D., and Boppré, M., Chiral pheromone and reproductive isolation between the Gypsy and Nun moth. Naturwissenschaften70 (1983) 466–467.CrossRefGoogle Scholar
  67. 65.
    Hanson, F. E., and Dethier, V. G., Role, of gustation and olfaction in food plant discrimination in the tobacco hornworm,Manduca sexta. J. Insect Physiol.19 (1973) 1019–1034.CrossRefPubMedGoogle Scholar
  68. 66.
    Hansson, B. S., Anton, S., and Christensen, T. A., Structure and function of antennal lobe neurons in the male turnip moth,Agrotis segetum (Lepidoptera: Noctuidae). J. comp. Physiol.A175 (1994) 547–562.CrossRefGoogle Scholar
  69. 67.
    Hansson, B. S., and Baker, T. C., Differential adaptation rates in a male moth's sex pheromone receptor neurons. Naturwissenschaften78 (1991) 517–520.CrossRefGoogle Scholar
  70. 68.
    Hansson, B. S., Christensen, T. A., and Hildebrand, J. G., Functionally distinct subdivisions of the macroglomerular complex in the antennal lobe of the male sphinx mothManduca sexta. J. comp. Neurol.312 (1991) 264–278.CrossRefPubMedGoogle Scholar
  71. 69.
    Hansson, B. S., Hallberg, E., Löfstedt, C., and Steinbrecht, R. A., Correlation between dendrite diameter and action potential amplitude in sex pheromone specific receptor neurons in maleOstrinia nubilalis (Lepidoptera: Pyralidae). Tissue Cell26 (1994) 503–512.CrossRefGoogle Scholar
  72. 70.
    Hansson, B. S., Ljungberg, H., Hallberg, E., and Löfstedt, C., Functional specialization of olfactory glomeruli in a moth. Science256 (1992) 1313–1315.PubMedGoogle Scholar
  73. 71.
    Hansson, B. S., Löfstedt, C., and Foster, S. P., Z-linked inheritance of male olfactory response to sex pheromone components in two species of tortricid moths,Ctenopseustis obliquana andCtenopseustis sp. Ent. expl Appl.53 (1989) 137–145.CrossRefGoogle Scholar
  74. 72.
    Hansson, B. S., Löfstedt, C., Löfqvist, J., and Hallberg, E., Spatial arrangements of different types of pheromone sensitive sensilla in a male moth. Naturwissenschaften73 (1986) 269.CrossRefGoogle Scholar
  75. 73.
    Hansson, B. S., Löfstedt, C., and Roelofs, W. L., Inheritance of olfactory response to sex pheromone components inOstrinia nubilalis. Naturwissenschaften74 (1987) 497–499.CrossRefGoogle Scholar
  76. 74.
    Hansson, B. S., Szöcs, G., Schmidt, F., Francke, W., Löfstedt, C., and Tóth, M., Electrophysiological and chemical analysis of sex pheromone communication system of the mottled umber,Erannis defoliaria (Lepidoptera: Geometridae). J. chem. Ecol.16 (1990) 1887–1897.Google Scholar
  77. 75.
    Hansson, B. S., Tóth, M., Löfstedt, C., Szöcs, G., Subchev, M., and Löfqvist, J., Pheromone variation among eastern European and a western Asian population of the turnip mothAgrotis segetum. J. chem. Ecol.16 (1990) 1611–1622.CrossRefGoogle Scholar
  78. 76.
    Hansson, B. S., Van der Pers, J. N. C., and Löfqvist, J., Comparison of male and female olfactory cell response to pheromone compounds and plant volatiles in the turnip moth,Agrotis segetum. Physiol. Ent.14 (1989) 147–155.Google Scholar
  79. 77.
    Hartlieb, E., Zur verhaltenssteuernden Wirkung flüchtiger Verbindungen aus der StraucherbseCajanus cajan (L.) auf die Weibchen vonHelicoverpa armigera (Hüb.). Doctoral thesis, Fakultät für Biologie der Ludwig-Maximilians-Universität, München 1993.Google Scholar
  80. 78.
    Hayashi J. H., and Hildebrand J. G., Insect olfactory, neurons in vitro: Morphological and physiological characterization of cells from the developing antennal lobes ofManduca sexta. J. Neurosci.10 (1990) 848–859.PubMedGoogle Scholar
  81. 79.
    Haynes, K. F., Zhao, J. Z., and Latif, A., Identification of floral compounds fromAbelia grandiflora that stimulate upwind flight in cabbage looper moths. J. chem. Ecol.17 (1991) 637–646.CrossRefGoogle Scholar
  82. 80.
    Homberg U., Montague R. A., and Hildebrand J. G., Anatomy of antenno-cerebral pathways in the brain of the sphinx mothManduca sexta. Cell Tissue Res.254 (1988) 255–281.CrossRefPubMedGoogle Scholar
  83. 81.
    Hoskins, S. G., Homberg, U., Kingan, T. G., Christensen, T. A., and Hildebrand, J. G., Immunocytochemistry of GABA in the antennal lobes of the sphinx mothManduca sexta. Cell Tissue Res.244 (1986) 243–252.CrossRefPubMedGoogle Scholar
  84. 82.
    Hubel D. H., Tungsten microelectrode for recording from single units. Science125 (1957) 549–550.Google Scholar
  85. 83.
    Itagaki, H., and Hildebrand, J. G., Olfactory interneurons in the brain of the larval spinx mothManduca sexta. J. comp. Physiol.A167 (1990) 309–320.CrossRefPubMedGoogle Scholar
  86. 84.
    Jönsson S., Malmström, T., Liljefors, T., and Hansson, B. S., Enantiomers of methyl substituted analogs of (Z)-5-decenyl acetate as probes for the chirality and complementarity of its receptor inAgrotis segetum: Synthesis and structure-activity relationships. J. chem. Ecol.19 (1993) 459–484.CrossRefGoogle Scholar
  87. 85.
    Kafka, W. A., Kasang, L., and Krieg, W., EAG and single cell responses of European cornborer,Ostrinia nubilalis, Z-strain (Hbn) to the sex pheromone components z11-14:Ac, e11-14:Ac, structural analogues and some of their mixtures. Acta phytopatol. ent. Hung.24 (1989) 117–124.Google Scholar
  88. 86.
    Kaissling, K. E., Sensory transduction in insect olfactory receptors, in: Biochemistry of Sensory Functions, pp. 243–273. Ed. L. Jaenicke. Springer Verlag, Berlin 1974.Google Scholar
  89. 87.
    Kaissling, K. E., chemo-electrical transduction in insect olfactory receptors. A. Rev. Neurosci.9 (1986) 121–145.CrossRefGoogle Scholar
  90. 88.
    Kaissling, K. E., Temporal characteristics of pheromone receptor cell responses in relation to orientation behaviour of moths, in: Mechanisms in Insect Olfaction, pp. 193–199. Eds T. L. Payne, M. C. Birch, and C. E. J. Kennedy. Oxford University Press, Oxford 1986.Google Scholar
  91. 89.
    Kaissling, K.-E., Hildebrand, J. G., and Tumlinson, J. H., Pheromone receptor cells in the male mothManduca sexta. Arch. Insect biochem. Physiol.10 (1989) 273–279.CrossRefGoogle Scholar
  92. 90.
    Kaissling, K. E., Keil, T. A., and Williams, J. L. D., Pheromone stimulation in perfused sensory hairs of the mothAntheraea polyphemus. J. Insect Physiol.37 (1991) 71–78.CrossRefGoogle Scholar
  93. 91.
    Kaissling, K.-E., and Ziegelberger, G., Receptor mediated change of pheromone binding protein inAntheraea polyphemus. Eur. Chemorec. Res. Org. Conf. XI abstracts (1994) 78.Google Scholar
  94. 92.
    Kanajia, S., and Kaissling, K.-E., Interactions of pheromone with moth antennae: Adsorption, desorption and transport. J. Insect Physiol.31 (1985) 71–81.CrossRefGoogle Scholar
  95. 93.
    Kanzaki, R., Arbas, E. A., and Hildebrand, J. G., Physiology and morphology of descending neurons in pheromoneprocessing olfactory pathways in the male mothManduca sexta. J. comp. Physiol.A169 (1991) 1–14.CrossRefPubMedGoogle Scholar
  96. 94.
    Kanzaki, R., Arbas, E. A., and Hildebrand, J. G., Physiology and morphology of protocerebral olfactory neurons in the male mothManduca sexta. J. comp. Physiol.A168 (1991) 281–298.CrossRefPubMedGoogle Scholar
  97. 95.
    Kanzaki, R., Arbas, E. A., Strausfeld, N. J., and Hildebrand, J. G., Physiology and morphology of projection neurons in the antennal lobe of the male mothManduca sexta. J. comp. Physiol.A165 (1989) 427–453.CrossRefPubMedGoogle Scholar
  98. 96.
    Kanzaki, R., and Shibuya, T., Olfactory neural pathway and sexual pheromone responses in the deutocerebrum of the male silkworm moth,Bombyx mori (Lepidoptera: Bombycidae). Appl. ent. Zool.18 (1983) 131–133.Google Scholar
  99. 97.
    Kanzaki, R., and Shibuya, T., Identification of the deutocerebral neurons responding to the sexual pheromone in male silkworm moth brain. Zool. Sci.3 (1986) 409–418.Google Scholar
  100. 98.
    Kasang, G., Physicochemical events in olfaction of the silkmoth. Naturwissenshaften60 (1973) 95–101.CrossRefGoogle Scholar
  101. 99.
    Keil, T. A., Reconstruction and morphometry of silkmoth olfactory hairs: A comparative study of sensilla trichodea on the antennae of maleAntherea polyphemus andAntherea pernyi (Insecta Lepidoptera). Zoomorphol.104 (1984) 147–156.CrossRefGoogle Scholar
  102. 100.
    Keil, T. A., Fine structure of a developing insect olfactory organ: Morphogenesis of the silkmoth antenna. Microscopy Res. Techn.22 (1992) 351–371.CrossRefGoogle Scholar
  103. 101.
    Keil, T. A., Dynamics of ‘immotile’ olfactory cilia in the silkmothAnherea. Tissue Cell25 (1993) 573–587.CrossRefGoogle Scholar
  104. 102.
    Keil T. A. and Steinbrecht R. A., Mechanosensitive and olfactory sensilla of insects, in: Insect Ultrastructure, pp. 477–516. Eds R. C. King and H. Akai. Plenum Press, New York 1984.Google Scholar
  105. 103.
    Keil, T. A., and Steiner, C., Morphogenesis of the antenna of the male silkmoth,Antheraea polyphemus. I. The leafshaped antenna of the pupa from diapause to apolysis. Tissue Cell23 (1990) 319–336.CrossRefGoogle Scholar
  106. 104.
    Keil, T. A., and Steiner, C., Morphogenesis of the antenna of the male silkmoth,Antheraea polyphemus, II. Differential mitoses of ‘dark’ precursor cells create the anlagen of sensilla. Tissue Cell22 (1990) 705–720.CrossRefGoogle Scholar
  107. 105.
    Keil, T. A., and Steiner, C., Morphogenesis of the antenna of the male silkmoth,Antheraea polyphemus, III. Development of olfactory sensilla and the properties of hair-forming cells. Tissue Cell23 (1991) 821–851.CrossRefGoogle Scholar
  108. 106.
    Kennedy, J. S., Ludlow, A. R., and Sanders, C. J., Guidance system used in moth sex attraction. Nature295 (1980) 475–477.CrossRefGoogle Scholar
  109. 107.
    Kennedy, J. S., Ludlow, A. R., and Sanders, C. J., Guidance of flying male moths by wind-borne sex pheromone. Physiol. Ent.6 (1981) 395–412.Google Scholar
  110. 108.
    Kennedy, J. S., and Marsh, D., Pheromone-regulated anemotaxis in flying moths. Science184 (1974) 999–1001.PubMedGoogle Scholar
  111. 109.
    Kent, K. S., Metamorphosis of the antennal center and the influence of sensory innervation on the formation of glomeruli in the hawk moth,Manduca sexta. Ph.D. dissertation, Harvard University, Cambridge, MA, USA 1985.Google Scholar
  112. 110.
    Kent K. S., Harrow, I. D., Quartararo P., and Hildebrand, J. G., An accessory olfactory pathway in Lepidoptera: the labial pitorgan and its central projections inManduca sexta and certain other sphinx moths and silk moths. Cell Tissue Res.245 (1986) 237–245.CrossRefPubMedGoogle Scholar
  113. 111.
    Kent K. S., and Hildebrand J. G., Cephalic sensory pathways is the central nervous system of larvalManduca sexta (Lepidoptera; Sphingidae). Phil. Trans. R. Soc. Lond.B315 (1987) 1–36.Google Scholar
  114. 112.
    Kent K. S., Hoskins S. G., and Hildebrand, J. G. A novel serotonin-immunoreactive neuron in the antennal lobe of the sphinx mothManduca sexta persists throughout postembryonic life. J. Neurobiol.18 (1987) 451–465.CrossRefPubMedGoogle Scholar
  115. 113.
    Klein, U., Sensillum lymph proteins from antennal olfactory hairs of the mothAntheraea polyphemus (Saturnidae). Insect Biochem.17 (1987) 385–396.Google Scholar
  116. 114.
    Klun, J. A., and Cooperators, Insect sex pheromones: intraspecific variability ofOstrinia nubilalis in North America and Europe. Environ. Ent.4 (1975) 891–894.Google Scholar
  117. 115.
    Klun, J. A., and Maini, S., Genetic basis of an insect chemical communication system: the European corn borer. Environ. Ent.8 (1979) 423–426.Google Scholar
  118. 116.
    Koontz, M. A., and Schneider, D., Sexual dimorphism in neuronal projections from the antennae of silk moths (Bombyx mori, Antheraea polyphemus) and the gypsy moth (Lymantria dispar). Cell Tissue Res.249 (1987) 39–50.CrossRefGoogle Scholar
  119. 117.
    Kramer, E., Turbullent diffusion and pheromone-triggered anemotaxis, in: Mechanisms in Insect Olfaction, pp. 59–67. Eds M. C. Birch and C. E. J. Kennedy. Clarendon Press, Oxford 1986.Google Scholar
  120. 118.
    Krieger, J., Gänßle, H., Raming, K., and Breer, H., Odorant binding proteins ofHeliothis virescens. Insect Biochem. molec. Biol.23 (1993) 449–456.CrossRefGoogle Scholar
  121. 119.
    Landolt, P. J., and Heath, R. R., Sexual role reversal in mate-finding strategies of the cabbage looper moth. Science249 (1990) 1026–1028.Google Scholar
  122. 120.
    Laue, M., and Steinbrecht, R. A., Immunocytochemical localization of general odorant-binding protein in olfactory sensilla of the silkmothAntheraea polyphemus. Naturwissenschaften81 (1994) 178–180.Google Scholar
  123. 121.
    Lee J.-K., and Altner H., Primary sensory projections of the labial palp-pit organ ofPieris rapae L. (Lepidoptera: Pieridae). Int. J. Insect morphol. Embryol.15 (1986) 439–448.CrossRefGoogle Scholar
  124. 122.
    Lee, J.-K., Selzer, R., and Altner, H., Lamellated outer dendritic segments of a chemoreceptor within wall-pore sensilla in the labial palp pit organ in the butterfly,Pieris rapae L. (Insecta, Lepidoptera). Cell Tissue Res.240 (1985) 333–342.CrossRefGoogle Scholar
  125. 123.
    Lee, J.-K., and Strausfeld, N. J., Structure, distribution and number of surface sensilla and their receptor cells on the olfactory appendage of the male mothManduca sexta. J. Neurocytol.19 (1990) 519–538.CrossRefPubMedGoogle Scholar
  126. 124.
    Lerner, R. L., Gyorgyi, T. K., Reagan, J., Roby-Shemkovitz, A., Rybcynski, R., and Vogt, R. G., Peripheral events in moth olfaction. Chem. Senses15 (1990) 191–198.Google Scholar
  127. 125.
    Light, D. M., and Birch, M. C., Electrophysiological basis for the behavioural response of male and femaleTrichoplusia ni to synthetic female pheromone. J. Insect Physiol.25 (1979) 161–167.CrossRefGoogle Scholar
  128. 126.
    Liljefors, T., Thelin, B., Van Der Pers, J. N. C., and Löfstedt C., Chain-elongated analogues of a pheromone component of the turnip moth,Agrotis segetum. A structure-activity study using molecular mechanics. J. Insect Physiol.31 (1985) 517–524.CrossRefGoogle Scholar
  129. 127.
    Linn, C. E. jr., Bjostad, L. B., Du, J W, and Roelofs, W. L., Redundancy in a chemical signal: Behavioural responses of maleTrichoplusia ni to a 6-component sex pheromone blend. J. chem. Ecol.10 (1984) 1635–1658.CrossRefGoogle Scholar
  130. 128.
    Ljungberg, H., Anderson, P., and Hansson, B. S., Physiology and morphology of pheromone-specific sensilla on the antennae of male and femaleSpodoptera littoralis (Lepidoptera: Noctuidae). J. Insect Physiol.39 (1993) 253–260.CrossRefGoogle Scholar
  131. 129.
    Löfstedt, C., Hansson, B. S., Dijkerman, H. J., and Herrebout, W. M., Behavioural and electrophysiological activity of unsaturated analogues of the pheromone tetradecyl acetate in the small ermine mothYponomeuta rorellus. Physiol. Ent.15 (1990) 47–54.Google Scholar
  132. 130.
    Löfstedt, C., Hansson, B. S., Roelofs, W., and Bengtsson, B. O., No linkage between genes controlling female pheromone production and male pheromone response in the European corn borer,Ostrinia nubilalis Hübner (Lepidoptera; Pyralidae). Genetics123 (1989) 553–556.PubMedGoogle Scholar
  133. 131.
    Löfstedt, C., Linn, C. E. jr., and Löfqvist, J., Behavioural responses of male turnip moths,Agrotis segetum to sex pheromone in a flight tunnel and in the field. J. chem. Ecol.11 (1985) 1209–1221.CrossRefGoogle Scholar
  134. 132.
    Löfstedt, C., Löfqvist, J., Lanne, B. S., Van Der Pers, J. N. C., and Hansson, B. S., Pheromone dialects in European turnip mothsAgrotis segetum. OIKOS46 (1986) 250–257.Google Scholar
  135. 133.
    Löfstedt, C., Van Der Pers, J. N. C., Löfqvist, J., Lanne, B. S., Appelgren, M., Bergström, G., and Thelin, B., Sex pheromone components of the turnip moth,Agrotis segetum: chemical identification, electrophysiological evaluation, and behavioural activity. J. chem. Ecol.8 (1982) 1305–1322.CrossRefGoogle Scholar
  136. 133a.
    Löfstedt, C., Vickers, N. J., and Baker, T. C., Courtship, pheromone titre and determination of the male mating success in the oriental fruit moth,Grapholita molesta (Lepidoptera: Tortricidae). Ent. Gen.15 (1990) 121–125.Google Scholar
  137. 134.
    Maida, R., Steinbrecht, A., Ziegelberger, G., and Pelosi, P., The pheromone binding protein ofBombyx mori: purification, characterization and immunocytochemical localization. Insect Biochem. molec. Biol.23 (1993) 243–253.CrossRefGoogle Scholar
  138. 135.
    Marion-Poll, F., and Tobin, T. R., Temporal coding of pheromone pulses and trains inManduca sexta. J. comp. Physiol.A171 (1992) 505–512.CrossRefPubMedGoogle Scholar
  139. 135a.
    Masson, C., and Mustaparta, H., Chemical information processing in the olfactory system of insects. Physiol. Rev.70 (1990) 199–245.PubMedGoogle Scholar
  140. 136.
    Matsumoto S. G., and Hildebrand J. G., Olfactory mechanisms in the mothManduca sexta: Response characteristics and morphology of central neurons in the antennal lobes. Proc. R. Soc. Sci., LondonB213 (1981) 249–277.Google Scholar
  141. 137.
    Mayer, M. S., Electrophysiological correlates of attraction inTrichoplusia ni. J. Insect Physiol.19 (1973) 1191–1198.CrossRefGoogle Scholar
  142. 138.
    Mayer, M. S., Responses of three antennal specialist neurons of maleTrichoplusia ni (Hübner) to sex pheromone components at and above naturally emitted levels. J. Insect Physiol.39 (1993) 401–412.CrossRefGoogle Scholar
  143. 139.
    Mayer, M. S., and Mankin, R. W., A newTrichoplusia ni antennal receptor neuron that responds to attomolar concentrations of a minor pheromone component. Experientia46 (1990) 257–259.CrossRefGoogle Scholar
  144. 140.
    Mayer, M. S., Mankin, R. W., and Lemire, G. F., Quantitation of the insect electroantennogram: Measurement of sensillar contributions, elimination of background potentials and relationship to olfactory sensation. J. Insect Physiol.30 (1984) 757–763.CrossRefGoogle Scholar
  145. 140a.
    McNeil, J. N., Evolutionary perspectives and insect pes control: An attractive blend for the deployment of semichemicals in management programs, in: Insect chemical Ecology, pp. 334–351. Eds B. D. Roitberg and M. B. Isman. Chapman & Hall, New York 1992.Google Scholar
  146. 141.
    Meng, L. Z., Wu, C. H., Wicklein, M., Kaissling, K.-E, and Bestmann, H. J., Number and sensitivity of three types of pheromone receptor cells inAntheraea penyi andA. polyphemus. J. comp. Physiol.A 165 (1989) 139–146.CrossRefGoogle Scholar
  147. 142.
    Mochizuki, F., Sugi, N., and Shibuya, T., Pheromone sensilla of the beet armyworm,Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). Appl. ent. Zool.4 (1992) 547–556.Google Scholar
  148. 143.
    Moore I., Biological amplification for increasing electroantennogram discrimination between two female sex pheromones ofSpodoptera littoralis (Lepidoptera: Noctuidae). J. chem. Ecol.7 (1981) 791–798.CrossRefGoogle Scholar
  149. 144.
    Moore I., Melamed-Madjar V., and Muszkat L., Antennal responses of an Israeli population ofOstrinia nubilalis Hbn. (Lepid. Pyralidae) males to their female sex pheromone components: magnification of EAG amplitudes with antenna-head preparations connected in series. Agronomie6 (1986) 517–522.Google Scholar
  150. 145.
    Murlis, J., and Jones, C. D., Fine scale structure of odour plumes in relation to insect orientation to distant pheromone and other attractant sources. Physiol. Ent.6 (1981) 71–86.Google Scholar
  151. 146.
    Myers, J., The structure of the antennae of the Florida queen butterfly,Danaus gilippus berenice. J. Morph.125 (1968) 315–328.CrossRefPubMedGoogle Scholar
  152. 147.
    Nagai T., Electroantennogram response gradient on the antenna of the European corn borer,Ostrinia nubilalis. J. Insect Physiol.27 (1981) 889–894.CrossRefGoogle Scholar
  153. 148.
    Nagai T., On the relationship between the electroantennogram and simultaneously recorded single sensillum response of the European corn borer,Ostrinia nubilalis. Arch. Insect Biochem. Physiol. (1983) 85–91 (reprint).Google Scholar
  154. 149.
    Nagai T., Starrat A. N., McLeod D. G. R., and Driscoll D. R., Electroantennogram responses of the European corn borer,Ostrinia nubilalis, to (Z)- and (E)-tentradecenyl acetates. J. Insect Physiol.23 (1977) 591–597.CrossRefGoogle Scholar
  155. 149a.
    Ochreng', S. A., Anderson, P., and Hansson, B. S., Antennal lobe projection patterns of olfactory receptor neurons involved in sex pheromone detection inSpodoptera littoralis (Lepidoptera: Noctuidae). Tissue Cell27 (1995) 221–232.PubMedGoogle Scholar
  156. 150a.
    O'Connell, R. J., Response of olfactory receptors to the sex attractant, its synergist and inhibitor in the red-banded leaf roller,Argyrotaenia velutinana, in: Olfaction and Taste IV, pp. 180–186. Ed. D. Schneider. Wissenschaftliche Verlags-Gesellschaft, Stuttgart 1972.Google Scholar
  157. 150.
    O'Connell, R. J., Responses to pheromone blends in insect olfactory receptor neurons. J. comp. Physiol.156 (1985) 747–761.CrossRefGoogle Scholar
  158. 151.
    O'Connell, R. J., Beauchamp, J. T., and Grant, A. J., Insect olfactory receptor responses to components of pheromone blends. J. chem. Ecol.12 (1986) 451–465.CrossRefGoogle Scholar
  159. 152.
    O'Connell R. J., Grant A. J., Mayer M. S., and Mankin R. W., Morphological correlates of differences in pheromone sensitivity in insect sensilla. Science220 (1983) 1408–1410.Google Scholar
  160. 153.
    Odendaal, F. J., Ehrlich, P. R., and Thomas, F. C., Structure and function of the antennae ofEuphydras editha (Lepidoptera: Nymphalidae). J. Morph.184 (1985) 3–22.Google Scholar
  161. 154.
    Oland, L. A., Orr, G., and Tolbert, L. P., Construction of a protoglomerular template by olfactory axons initiates the formation of olfactory glomeruli in the insect brain. J. Neurosci.10 (1990) 2096–2112.PubMedGoogle Scholar
  162. 155.
    Olberg, R. M., Interneurons sensitive to female pheromone in the deutocerebrum of the male silkworm moth;Bombyx mori. Physiol. Ent.8 (1983) 419–428.Google Scholar
  163. 156.
    Payne, T. L., and Dickens, J. C., Adaptationto determine receptor system specificity in insect olfactory communication. J. Insect Physiol.22 (1976) 1569–1572.CrossRefGoogle Scholar
  164. 157.
    Phelan P. L., and Baker T. C., Evolution of male pheromones in moths: Reproductive isolation through sexual selection? Science235 (1987) 205–207.Google Scholar
  165. 158.
    Phelan, P. L. and Baker, T. C., Comparative study of courtship in twelve phycitine moths (Lepidoptera: Pyralidae). J. Insect Behav.3 (1990) 303–326.CrossRefGoogle Scholar
  166. 159.
    Pivnick, K. A., Lavoie-Dornik, J., and McNeil, J. N., The role of the androconia in the mating behaviour of the European skipper,Thymelicus lineola, and evidence for a male sex pheromone. Physiol. Ent.17 (1992) 260–268.Google Scholar
  167. 160.
    Ponder, B. M., and Seabrook, W. D., Sensitivity of blueberry laftier moths (Lepidoptera: Tortricidae) (Kearfott) to their own sex pheromone: Mating bioassay, electroantennogram, and trap attractancy studies. Can. Ent.123 (1991) 231–238.Google Scholar
  168. 161.
    Preiss, R., and Kramer, E., Pheromone-induced anemotaxis in simulated free flight, in: Mechanisms in Insect Olfaction, pp. 69–79. Eds M. C. Birch and C. E. J. Kennedy. Clarendon Press, Oxford 1986.Google Scholar
  169. 162.
    Prestwich, G. D., Chemical studies of pheromone receptors in insects. Arch. Insect biochem. Physiol.22 (1993) 75–86.Google Scholar
  170. 163.
    Priesner, E., Progress in the analysis of pheromone receptor systems. Ann. Zool. Ecol. Anim.11 (1979) 533–546.Google Scholar
  171. 164.
    Priesner, E., Jacobson, M., and Bestmann, H. J., Structure-response relationships in noctuid sex pheromone reception. Z. Naturf.30c (1975) 283–293.Google Scholar
  172. 165.
    Renwick, J. A. A., Chemical ecology of oviposition in phytophagous insects. Experientia45 (1989) 223–228.CrossRefGoogle Scholar
  173. 166.
    Roelofs, W. L., and Comeau, A., Sex pheromone perception: Electroantennogram responses of the redbanded leaf rooler moth. J. Insect Physiol.17 (1971) 1969–1982.CrossRefPubMedGoogle Scholar
  174. 167.
    Roelofs, W., Glover, T., Tang, X.-H., Sreng, I., Robbins, P., Eckenrode, C., Löfstedt, C., Hansson, B. S., and Bengtsson, B. O., Sex pheromone production and perception in European cornborer moths is determined by both autosomal and sex-linked genes. Proc. natl Acad. Sci. USA84 (1987) 7585–7589.Google Scholar
  175. 168.
    Rospars, J. P., Invariance and sex-specific variations of the glomerular organization in the antennal lobes of a moth,Mamestra brassicae, and a butterfly,Pieris brassicae. J. comp. Neurol.220 (1983) 80–96.CrossRefPubMedGoogle Scholar
  176. 169.
    Rospars, J. P., and Hildebrand, J. G., Anatomical identification of glomeruli in the antennal lobes of the male sphinx mothManduca sexta Cell Tissue Res.270 (1992) 205–227.CrossRefPubMedGoogle Scholar
  177. 170.
    Ross R. J., Palaniswamy, P., and Seabrook W. D., Electroantennograms from spruce budworm moths (Choristoneura fumiferana) (Lepidoptera: Tortricidae) of different ages and for various pheromone concentrations. Can. Ent.111 (1979) 807–816.Google Scholar
  178. 171.
    Rumbo E. R., Cross-and self-adaptation of electroantennogram responses in the lightbrown apple moth (Epiphyas postvittana). J. Insect Physiol.34 (1988) 117–123.CrossRefGoogle Scholar
  179. 172.
    Rutowski, R. L., The evolution of male mate-locating behavior in butterflies. Am. Nat.138 (1991) 1121–1139.CrossRefGoogle Scholar
  180. 173.
    Sanes, J. R., and Hildebrand, J. G., Origin and morphogenesis of sensory neurons in an insect antenna. Devl Biol.51 (1976) 300–319.CrossRefGoogle Scholar
  181. 174.
    Sauer, A. E., Karg, G., Koch, U. T., De Kramer, J. J., and Milli, R., A portable EAG system for the measurement of pheromone concentrations in the field. chem. Senses17 (1992) 543–553.Google Scholar
  182. 175.
    Schneider, D., Mikro-Elektroden registrieren die elektrischen Impulse einzelner Sinnesnervenzellen der Antenne des SeidenspinnersBombyx mori L. Industrie-Elektronik (Hamburg)5 (1955) 3–7.Google Scholar
  183. 176.
    Schneider, D., Elektrophysiologische Untersuchungen von chemo- und Mechanorezeptoren der Antenne des SeidenspinnersBombyx mori L. Z. vergl. Physiol.40 (1957) 8–41.CrossRefGoogle Scholar
  184. 177.
    Schneider, D., Insect olfaction—Our research endeavour, in: Foundations of Sensory Science, pp. 381–418. Eds W. W. Dawson and J. M. Enoch. Springer-Verlag, New York 1984.Google Scholar
  185. 178.
    Schneider, D., 100 Years of pheromone research. Naturwissenschaften79 (1992) 241–250.CrossRefGoogle Scholar
  186. 179.
    Schneider, D., and Hecker, E., Zur Elektrophysiologie der Antenne des SeidenspinnersBombyx mori bei Reizung mit angereicherten Extrakten des Sexuallockstoffes. Z. Naturf.11b (1956) 121–124.Google Scholar
  187. 180.
    Schneider, D., Kafka, W. A., Beroza, M., and Bierl, B. A., Odor receptor responses of gypsy and nun moths (Lepidoptera: Lymantriidae) to disparlure and its analogues. J. comp. Physiol.A 113 (1977) 1–15.CrossRefGoogle Scholar
  188. 181.
    Schneider, D., and Seibt, U., Sex pheromone of the Queen butterfly: electro-antennogram responses. Science164 (1969) 1173–1174.Google Scholar
  189. 182.
    Schneiderman A. M., and Hildebrand J. G., Sexually dimorphic development of the insect olfactory pathway. Trends Neurosc.8 (1985) 494–499.CrossRefGoogle Scholar
  190. 183.
    Schneiderman A. M., Matsumoto, S. G., and Hildebrand J. G., Trans-sexually grafted antennae influence development of sexualy dimorphic neurones in moth brain. Nature298 (1982) 844–846.CrossRefGoogle Scholar
  191. 184.
    Schoonhoven, L. M., What makes a caterpillar eat? The sensory code underlying feeding behavior, in: Perspective in Chemoreception and behavior, pp. 69–97. Eds R. F. Chapman, E. A. Bernays and J. G. Stoffolano Jr. Springer-Verlag, New York 1987.Google Scholar
  192. 185.
    Schoonhoven, L. M., and Dethier, V. G., Sensory aspects of host-plant discrimination by lepidopterous larvae. Archs. néerl. Zool.16 (1966) 497–530.Google Scholar
  193. 186.
    Schulz, S., Francke, W., Konig, W. A., Schurig, V., Mori, K., Kittmann, R., and Schneider, D., Male pheromone of swift moth,Hepialus hecta L. (Lepidoptera, Hepialidae). J. chem. Ecol.16 (1990) 3511–3521.CrossRefGoogle Scholar
  194. 187.
    Schweitzer E. S., Sanes J. R., and Hildebrand J. G., Ontogeny of electroantennogram responses in the moth,Manduca sexta. J. Insect Physiol.22 (1976) 955–960.CrossRefGoogle Scholar
  195. 188.
    Seabrook, W. D., Linn, C. E., Dyer, L. J., and Shorey, H. H., Comparison of electroantennograms from female and male cabbage looper moths (Trichoplusia ni) of different ages and for various pheromone concentrations. J. chem. Ecol.13 (1987) 1443–1453.CrossRefGoogle Scholar
  196. 189.
    Serby, M. J., and Chobor, K. L. (Eds), Science of Olfaction. Springer-Verlag, New York 1992.Google Scholar
  197. 190.
    Shaver, T. N., Lopez, J. D. Jr., and Hartstack, A. W. Jr. Effects of pheromone components and their degradation products on the response ofHeliothis spp to traps. J. chem. Ecol.8 (1982) 755–762.CrossRefGoogle Scholar
  198. 191.
    Stange, G., High resolution measurements of atmospheric carbon dioxide concentration changes by the labial palp organ of the mothHeliothis armigera (Lepidoptera: Noctuidae). J. comp. Physiol.A 171 (1992) 317–324.CrossRefGoogle Scholar
  199. 192.
    Steinbrecht, R. A., Zur Morphometrie der Antenne des Seidenspinners,Bombyx mori L. Zahl und Verteilung der Riechsensillen (Insecta, Lepidoptera). Morph. Tiere68 (1970) 93–126.Google Scholar
  200. 193.
    Steinbrecht, R. A., Der Feinbau olfaktorischer Sensillen des Seidenspinners (Insecta, Lepidoptera). Z. Zellforsch.139 (1973) 533–565.PubMedGoogle Scholar
  201. 194.
    Steinbrecht, R. A., Functional morphology of pheromonesensitive sensilla, in: Pheromone Biochemistry, pp. 353–383. Eds G. D. Prestwich and G. J. Blomquist. Academic Press, New York 1987.Google Scholar
  202. 195.
    Steinbrecht, R. A., and Gnatzy, W., Pheromone receptors inBombyx mori andAntherea pemyi. I. Reconstruction of the cellular organization of the sensilla trichodea. Cell Tissue Res.235 (1984) 25–34.PubMedGoogle Scholar
  203. 196.
    Steinbrecht, R. A., Keil, T. A., Ozaki, M., Maida, R., and Ziegelberger, G., Immunocytochemistry of pheromone binding protein, in: Synapse-Transmission-Modulation, Proceedings of the 19th Göttingen Neurobiology Conference, p. 172. Eds N. Elsner and H. Penzlin. Thieme Verlag, Stuttgart 1991.Google Scholar
  204. 197.
    Steinbrecht, R. A., Laue, M., Zhang, S.-G., and Ziegelberger, G., Immunocytochemistry of odorant-binding proteins, in: Olfaction and Taste XI, pp. 804–807. Ed. K. Kurihara. Springer, Tokyo 1994.Google Scholar
  205. 198.
    Steinbrecht, R. A., Ozaki, M., and Ziegelberger, G., Immunocytochemical localization of pheromone-binding protein in moth antennae. Cell Tissue Res.270 (1992) 287–302.CrossRefGoogle Scholar
  206. 199.
    Stengl, M., Intracellular-mesenger-mediated cation channels in cultured olfactory receptor neurons. J. exp Biol.178 (1993) 125–147.PubMedGoogle Scholar
  207. 200.
    Stengl, M., Hatt, H., and Breer, H., Peripheral processes in insect olfaction. A. Rev. Physiol.54 (1992) 665–681.CrossRefGoogle Scholar
  208. 201.
    Stengl M., and Hildebrand J. G., Insect olfactory neurons in vitro: Morphological and immunocytochemical characterization of male-specific antennal receptor cells from developing antennae of maleManduca sexta. J. Neurosci.10 (1990) 837–847.PubMedGoogle Scholar
  209. 202.
    Stengl, M., Zufall, F., Hatt, H., and Hildebrand, J. G., Olfactory receptor neurons from antennae of developing maleManduca sexta respond to components of the speciesspecific sex pheromone in vitro. J. Neurosci.12 (1992) 2523–25331.PubMedGoogle Scholar
  210. 203.
    Städler, E., and Hanson, F. E., Olfactory capabilities of the “gustatory” chemoreceptors of the tobacco hornworm larvae. J. comp. Physiol.A 104 (1975) 97–102.CrossRefGoogle Scholar
  211. 204.
    Sun, X. J., Tolbert, L. P., and Hildebrand, J. G., Ramification pattern and ultrastructural characteristics of the serotonin-immunoreactive neuron in the antennal lobe of the mothManduca sexta: A laser scanning confocal and electron microscopic study. J. comp. Neurol.338 (1993) 5–16.CrossRefPubMedGoogle Scholar
  212. 205.
    Taylor, T. R., Ferkovich, S. M., and Van Essen, F., Increased pheromone catabolism by antennal esterases after adult eclosion of the cabbage looper moth. Experientia37 (1981) 729–731.CrossRefGoogle Scholar
  213. 206.
    Todd, J. L., and Baker, T. C., Response of single antennal neurons of female cabbage loopers to behaviorally active attractants. Naturwissenschaften80 (1993) 183–186.CrossRefGoogle Scholar
  214. 207.
    Todd, J. L., Haynes, K. F., and Baker, T. C., Antennal neurones specific for redundant pheromone components in normal and mutantTrichoplusia ni males. Physiol. Ent.17 (1992) 183–192.Google Scholar
  215. 208.
    Tolbert L. P., and Hildebrand J. G., Organization and synaptic ultrastructure of glomeruli in the antennal lobes of the mothManduca sexta: a study using thin sections and freeze-structure. Phil. Trans. R. Soc. Lond.B 213, (1981) 279–301.Google Scholar
  216. 209.
    Tolbert, L. P., and Oland, L. A., Glial cells form boundaries for developing insect olfactory glomeruli. Expl Neurol.109 (1990) 19–28.Google Scholar
  217. 210.
    Tolbert, L. P., and Sirianni, P. A., Requirement for olfactory axons in the induction and stabilization of olfactory glomeruli in an insect. J. comp. Neurol.298 (1990) 69–82.CrossRefPubMedGoogle Scholar
  218. 211.
    Van den Berg, M. J., and Ziegelberger, G., On the function of the pheromone binding protein in the olfactory hairs ofAntheraea polyphemus. J. Insect. Physiol.37 (1991) 79–85.CrossRefGoogle Scholar
  219. 212.
    Van den Pers, J. N. C., comparison of single cell response of antennal sensilla trichodea in the nine European small ermine moths (Yponomeuta spp.). Ent. exp Appl.31 (1982) 255–264.Google Scholar
  220. 213.
    Van Der Pers, J. N. C., and Den Otter, C. J., Single cell responses from olfactory receptors of small ermine moths to sex-attractants. J. Insect Physiol.24 (1978) 337–343.CrossRefGoogle Scholar
  221. 214.
    Van der Pers, J. N. C., and Löfstedt, C., Continuous single sensillum recording as a detection method for moth pheromone components in the effluent of a gas cromatograph. Physiol. Ent.8 (1983) 203–211.Google Scholar
  222. 215.
    Van der Pers, J. N. C., and Minks, A. K., Pheromone monitoring in the field using single sensillum recording. Ent. expl Appl.68 (1993) 237–245.Google Scholar
  223. 216.
    Vickers, N. J., and Baker, T. C., Reiterative responses to single strands of odor promote sustained upwind flight and odor source location by moths. Proc. natl Acad. Sci. USA91 (1994) 5756.PubMedGoogle Scholar
  224. 217.
    Vickers, N. J., Christensen, T. A., Mustaparta, H., and Baker, T. C., chemical communication in heliothine moths. 3. Flight behavior of maleHelicoverpa zea andHeliothis virescens in response to varying ratios of intraspecific and interspecific sex pheromone components. J. comp. Physiol.A 169 (1991) 275–280.CrossRefGoogle Scholar
  225. 218.
    Vogt, R. G., The molecular basis of pheromone reception: Its influence on behavior, in: Pheromone Biochemistry, pp. 385–431. Eds G. D. Prestwich and G. J. Blomquist, Academic Press, New York 1987.Google Scholar
  226. 219.
    Vogt, R. G., Prestwich, G. D., and Lerner, M. R., Odorantbinding-protein subfamilies associate with distinct clases of olfactory receptor neurons in insects. J. Neurobiol.22 (1991) 74–84.CrossRefPubMedGoogle Scholar
  227. 220.
    Vogt, R. G., and Riddiford, L. M., Pheromone binding and inactivation by moth antennae. Nature (London)293 (1981) 707–709.CrossRefGoogle Scholar
  228. 221.
    Vogt, R. G., and Riddiford, L. M., Pheromone reception: A kinetic equilibrium, in: Mechanisms in Insect Olfaction, pp. 201–208. Eds M. C. Birch and C. E. J. Kennedy. Clarendon Press, Oxford 1986.Google Scholar
  229. 222.
    Vogt, R. G., and Riddiford, L. M., Scale esterase: A pheromone-degrading enzyme from scales of silk mothAntheraea polyphemus. J. chem. Ecol.12 (1986) 469–482.CrossRefGoogle Scholar
  230. 223.
    Vogt, R. G., Riddiford, L. M., and Prestwich, G. D., Kinetic properties of a sex pheromone-degrading enzyme: The sensillar esterase ofAntheraea polyphemus. Proc. natl Acad. Sci. U.S.A.82 (1985) 8827–8831.PubMedGoogle Scholar
  231. 224.
    Vogt, R. G., Rybczynski, R., and Lerner, M. R., Molecular cloning and sequencing of general odorant binding proteins GOBP1 and GOBP2 from the tobacco hawk mothManduca sexta—comparisons with other insect OBPs and their signal peptides. J. Neurosci.11 (1991) 2972–2984.PubMedGoogle Scholar
  232. 225.
    Wadhams, L. J., Coupled gas chromatography—single cell recording. A technique for use in the analysis of insect pheromones. Z. Naturf.37c (1982) 947–952.Google Scholar
  233. 226.
    Waldrop, B., Christensen, T. A., and Hildebrand, J. G., GABA-mediated synaptic inhibition of projection neurons in the antennal lobes of the sphinx moth,Manduca sexta. J. comp. Physiol.A161 (1987) 23–32.CrossRefPubMedGoogle Scholar
  234. 227.
    Williams, J. L. D., Nodes on the large pheromone-sensitive dendrites of olfactory hairs of the male silkmoth,Antheraea polyphemus (Cramer) (Lepidoptera: Saturnidae). Int. J. Insect Morphol. & Embryol.17 (1988) 145–151.Google Scholar
  235. 228.
    Willis, M. A., and Baker, T. C., Effects of intermittent and continuous pheromone stimulation on the flight behaviour of the oriental fruit moth,Grapholita molesta. Physiol. Ent.9 (1983) 341–358.Google Scholar
  236. 229.
    Wunderer, H., Hansen, K., Bell, T. W., Schneider, D., and Meinwald, J., Sex pheromones of two Asian moths (Creatonotos transiens, C. gangis; Lepidoptera-Arctiidae): behavior, morphology, chemistry and electrophysiology. Expl Biol.46 (1986) 11–27.Google Scholar
  237. 230.
    Zacharuk, R. Y., Ultrastructure and function of insect chemosensilla. A. Rev. Ent.25 (1980) 27–47.CrossRefGoogle Scholar
  238. 231.
    Zagatti, P., Renou, M., Malosse, C., Frerot, B., Pavis, C., Lettere, M., Descoins, C., Permana, A., Pivot, Y., and Leclant, F., Sex pheromone of the European sunflower moth,Homoeosoma nebulellum (Den and Schiff) (Lepidoptera, Pyralidae). J. chem. Ecol.17 (1991) 1399–1414.CrossRefGoogle Scholar
  239. 232.
    Zufall, F., and Hatt, H., A calcium-activated nonspecific cation channel from olfactory receptor neurones of the silkmothAntheraea polyphemus. J. exp Biol.161 (1991) 455–468.Google Scholar
  240. 233.
    Zufall, F., Stengl, M., Franke, C., Hildebrand, J. G., and Hatt, H., Ionic currents of cultured olfactory receptor neurons from antennae of maleManduca sexta. J. Neurosci.11 (1991) 956–965.PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag 1995

Authors and Affiliations

  • B. S. Hansson
    • 1
  1. 1.Department of EcologyLund UniversityLund(Sweden)

Personalised recommendations