Experientia

, Volume 40, Issue 11, pp 1240–1244

Effects of pre- and post-irradiation glucan treatment on pluripotent stem cells, granulocyte, macrophage and erythroid progenitor cells, and hemopoietic stromal cells

  • M. L. Patchen
  • T. J. MacVittie
  • L. M. Wathen
Article

Summary

Glucan, a beta-1, 3 polyglucose, was administered to mice either 1 h before or 1 h after a 650 rad exposure to cobalt-60 radiation. Compared to radiation controls, glucan-treated mice consistantly exhibited a more rapid recovery of pluripotent stem cells and committed granulocyte, macrophage, and erythroid progenitor cells. This may partially explain the mechanism by which glucan also enhances survival in otherwise lethally irradiated mice.

Key words

Mice glucan treatment Co60-irradiation stem cells, pluripotent granulocytes macrophages erythroid progenitor cells hemopoietic stomal cells hemopoiesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hassid, W. Z., Joslyn, M. A., and McCready, M., The molecular constitution of an insoluble polysaccharide from yeastSaccharomyces cerevisiae. J. Am. chem. Soc.63 (1941) 295–298.CrossRefGoogle Scholar
  2. 2.
    DiLuzio, N. R., Williams, D. L., McNamee, R. B., Edwards, B. F., and Kitahama, A., Comparative tumor-inhibitory and antibacterial activity of soluble and particulate glucan. Int. J. Cancer.24 (1979) 773–779.PubMedGoogle Scholar
  3. 3.
    DiLuzio, N. R., Pisano, J. C., and Saba, T. M., Evaluation of the mechanism of glucan induced stimulation of the reticuloendothelial system. J. reticuloendoth. Soc.7 (1970) 731–742.Google Scholar
  4. 4.
    DiLuzio, N. R., in: Pharmacology of the reticuloendothelial system-accent on glucan; in The reticuloendothelial system in health and disease: Functions and characteristics, pp. 412–421. Eds. S. M. Reichard, M. E. Escobar and H. Friedman. Plenum Press, New York 1976.Google Scholar
  5. 5.
    Cook, J. A., Taylor, D., Cohen, C., Rodrigue, J., Malshet, V., and DiLuzio, N. R., Comparative evaluation of the role of macrophages and lymphocytes in mediating the antitumor action of glucan, in: Immune modulation and control of neoplasma by adjuvant therapy, pp. 183–194. Ed. M. A. Chirigos, Raven Press, New York 1978.Google Scholar
  6. 6.
    DiLuzio, N. R., Evaluation of the graft-vs-host reaction of the immune competence of lymphoid cells of mice with altered reticuloendothelial function. J. reticuloendoth. Soc.4 (1967) 459–475.Google Scholar
  7. 7.
    Wooles, W. R., and DiLuzio, N. R., Reticuloendothelial function and immune response. Science142 (1963) 1078–1080.PubMedGoogle Scholar
  8. 8.
    Burgaleta, C., and Golde, D. W., Effect of glucan on granulopoiesis and macrophage genesis in mice. Cancer Res.37 (1978) 1739–1742.Google Scholar
  9. 9.
    Niskanen, E. O., Burgaleta, C., Cline, M. J., and Golde, D. W., Effect of glucan, a macrophage activator, on murine hemopoietic cell proliferation in diffusion chambers in mice. Cancer Res.38 (1978) 1406–1409.PubMedGoogle Scholar
  10. 10.
    Patchen, M. L., and Lotzova, E., Modulation of murine hemopoiesis by glucan. Exp. Hemat.8 (1980) 409–422.PubMedGoogle Scholar
  11. 11.
    Patchen, M. L., and MacVittie, T. J., Dose-dependent responses of murine pluripotent stem cells and myeloid and erythroid progenitor cells following administration of the immunomodulating agent glucan. Immunopharmacology5 (1983) 303–313.CrossRefPubMedGoogle Scholar
  12. 12.
    Patchen, M. L., and MacVittie, T. J., Temporal response of murine pluripotent stem cells and myeloid and erythroid progenitor cells to low-dose glucan treatment. Acta hemat.70 (1983) 281–288.Google Scholar
  13. 13.
    Patchen, M. L., and Lotzova, E., The role of macrophages and T-lymphocytes in glucan mediated alteration of murine hemopoiesis. Biomedicine34 (1981) 71–77.PubMedGoogle Scholar
  14. 14.
    Patchen, M. L., and MacVittie, T. J., Use of glucan to enhance hemopoietic recovery after exposure to cobalt-60 irradiation, in: Macrophages and natural killer cells, pp. 267–272. Eds S. J. Norman and E. Sorkin, Plenum Press, New York 1982.Google Scholar
  15. 15.
    Pospisil, M., Jary, J., Netikova, J., and Marek, M., Glucan-induced enhancement of hemopoietic recovery in gamma-irradiated mice. Experientia38 (1982) 1232–1234.PubMedGoogle Scholar
  16. 16.
    Wathen, L. K., Knapp, S. A., and DeGowin, R. L., Suppression of marrow stromal cells and microenvironmental damage following sequential radiation and cyclophosphamide. Int. J. Radiat. Oncol. biol. Phys.7 (1981) 935–941.PubMedGoogle Scholar
  17. 17.
    Till, J. E., and McCulloch, E. A., A direct measurement of radiation sensitivity of normal bone marrow cells. Radiat. Res.14 (1961) 213–222.PubMedGoogle Scholar
  18. 18.
    MacVittie, T. J., Alterations induced in macrophage and granulocyte-macrophage colony-forming cells by a single injection of mice withCorynebacterium parvum. J. reticuloendoth. Soc.26 (1979) 479–490.Google Scholar
  19. 19.
    Bradley, T. R., and Metcalf, D., The growth of mouse bone marrow cells in vitro. Aust. J. exp. Biol. med. Sci.44 (1966) 287–300.PubMedGoogle Scholar
  20. 20.
    Pluznik, D. H., and Sachs, L., The cloning of normal ‘mast’ cells in tissue culture. J. Cell Physiol.66 (1965) 319–324.CrossRefPubMedGoogle Scholar
  21. 21.
    MacVittie, T. J., and Weatherly, T. L., Characteristics of thein vitro monocyte — macrophage colony forming cells detected in mouse thymus and lymph nodes, in: Experimental Hematology Today, pp. 147–156. Eds. S. J. Baum and G. D. Ledney, Springer-Verlag, New York 1977.Google Scholar
  22. 22.
    Weinberg, S. R., McCarthy, E. G., MacVittie, T. J., and Baum, S. J., Effect of low-dose irradiation on pregnant mouse hemopoiesis. Br. J. Haemat.48 (1981) 127–135.Google Scholar
  23. 23.
    Stephenson, J. R., Axelrad, A. A., McLeod, D. L., and Shreeve, M. M., Induction of colonies of hemoglobin-synthesizing cells by erythropoietin in vitro. Proc. natl Acad. Sci. USA68 (1971) 1542–1546.PubMedGoogle Scholar
  24. 24.
    McLeod, D. L., Shreeve, M. M., and Axelrad, A. A., Culture system in vitro for the assay of erythropoietic and megakaryocytic progenitors; in In vitro aspects of erythropoiesis, pp. 31–36. Ed. M. J. Murphy, Springer, New York 1978.Google Scholar
  25. 25.
    Patchen, M. L., Immunomodulation and Hemopoiesis. Surv. Immun. Res.2 (1983) 237–242.Google Scholar
  26. 26.
    Kokosis, P. L., Williams, D. L., Cook, J. A., and DiLuzio, N. R., Increased resistance toStaphylococcus aureus infection and enhancement in serum lysozyme activity by glucan. Science199 (1978) 1340–1342.PubMedGoogle Scholar
  27. 27.
    Reynolds, J. A., Kastello, M. D., Harrington, D. G., Crobbs, C. L., Peters, C. J., Jemski, J. V., Scott, G. H., and DiLuzio, N. R., Glucan-induced enhancement of host resistance to selected infectious disease. Infect. Immun.30 (1980) 51–57.PubMedGoogle Scholar
  28. 28.
    DiLuzio, N. R., Williams, D. L., and Browder, W., Immunopharmacology of glucan: The modification of infectious disease, in press.Google Scholar

Copyright information

© Birkhäuser Verlag 1984

Authors and Affiliations

  • M. L. Patchen
    • 1
  • T. J. MacVittie
    • 1
  • L. M. Wathen
    • 1
  1. 1.Experimental Hematology DepartmentArmed Forces Radiobiology Research InstituteBethesdaUSA

Personalised recommendations