Advertisement

Experientia

, Volume 42, Issue 11–12, pp 1192–1197 | Cite as

Psychrophilic and psychrotrophic microorganisms

  • A. -M. Gounot
Article

Summary

Psychrophilic and psychrotrophic microorganisms have the ability to grow at 0°C. Psychrotrophic microorganisms have a maximum temperature for growth above 20°C and are widespread in natural environments and in foods. Psychrophilic microorganisms have a maximum temperature for growth at 20°C or below and are restricted to permanently cold habitats. This ability to grow at low temperature may be correlated with a lower temperature characteristic than that of the mesophiles, an increasing proportion of unsaturated fatty acids in the lipid phase of the cell membrane, which makes it more fluid, and a protein conformation functional at low temperature. The relatively low maximum temperature of growth for these microorganisms is often considered to be due to the thermolability of one or more essential cellular components, particularly enzymes, while some degradative activities are enhanced, resulting in an exhaustion of cell energy, a leakage of intracellular substances or complete lysis. Psychrotrophic microorganisms are well-known for their degradative activities in foods. Some are pathogenic or toxinogenic for man, animals or plants. However in natural microbial ecosystems psychrotrophic and psychrophilic microorganisms can play a large role in the biodegradation of organic matter during cold seasons.

Key words

Psychrophily psychrotrophy microorganisms temperature physiology activities 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alsobrook, D., Larkin, J. M., and Seag, M. W., Effect of temperature on the cellular integrity of Bacillus psychrophilus. Can. J. Microbiol.18 (1972) 1671–1678.Google Scholar
  2. 2.
    Baross, J. A., and Morita, R. Y., Microbial life at low temperatures: Ecological aspects, in: Microbial Life in Extreme Environments, pp. 9–71. Ed. D. J. Kushner. Academic Press, London 1978.Google Scholar
  3. 3.
    Bobier, S. A., Ferronio, G. D., and Inniss, W. E., Protein synthesis by the psychrophiles Bacillus psychrophilus and Bacillus insolitus. Can. J. Microbiol.18 (1972) 1837–1843.Google Scholar
  4. 4.
    Brock, T. D., Biology of Microorganisms, 3rd edn. Prentice-Hall, New Jersey 1979.Google Scholar
  5. 5.
    Buchanan, R. E., and Gibbons, N. E., Bergey's Manual of Determinative Bacteriology, 8th edn. Williams and Wilkins, Baltimore 1974.Google Scholar
  6. 6.
    Buttiaux, R., Microbiologie et décongélation. Revue gén. Froid6 (1973) 591–592.Google Scholar
  7. 7.
    Canillac, N., Croissance et composition lipidique d'Arthrobacter aux basses températures. Thèse 3ème Cycle, Lyon 1976.Google Scholar
  8. 8.
    Canillac, N., Pommier, M. T., and Gounot, A. M., Effet de la température d'incubation sur la composition lipidique de Corynébactériacées du genre Arthrobacter. Can. J. Microbiol.28 (1982) 284–290.Google Scholar
  9. 9.
    D'Aoust, J. Y., and Kushner, D. J., Structural changes during lysis of psychrophilic marine bacterium. J. Bact.108 (1971) 916–927.Google Scholar
  10. 10.
    Farrell, J., and Rose, A. H., Temperature effects on microorganisms, in: Thermobiology, pp. 147–218. Ed. A. H. Rose. Academic Press, London 1967.Google Scholar
  11. 11.
    Ferroni, G. D., and Inniss, A. E., Thermally caused filament formation in the psychrophilic Bacillus insolitus. Can. J. Microbiol.19 (1973) 581–584.Google Scholar
  12. 12.
    Forster, J., Über einige Eigenschaften leuchtender Bakterien. Zentbl. Bakt. ParasitKde2 (1887) 337–340.Google Scholar
  13. 13.
    Fulco, A. J., Biosynthesis of unsaturated fatty acids in bacilli. II Temperature dependent biosynthesis of polyunsaturated acids. J. biol. Chem.245 (1970) 2985–2990.Google Scholar
  14. 14.
    Gounot, A. M., Contribution à l'étude des bactéries des grottes froides. V Int. Kongr. Speläelogie Stuttgart 1969. Abh. Bd4, B23/1–6.Google Scholar
  15. 15.
    Gounot, A. M., Effects of temperature on the growth of psychrophilic bacteria from glaciers. Can. J. Microbiol.22 (1976) 839–846.Google Scholar
  16. 16.
    Gounot, A. M., Novitsky, T. J., and Kushner, D. J., Effects of temperature on the macromolecular composition and fine structure of psychrophilic Arthrobacter species. Can. J. Microbiol.23 (1977) 357–362.Google Scholar
  17. 17.
    Guthrie, C., Nashimoto, H., and Nomura, M., Structure and function ofE. coli ribosomes. VIII. Cold-sensitive mutants defective in ribosome assembly. Proc. natn. Acad. Sci. USA63 (1969) 384–392.Google Scholar
  18. 18.
    Hanus, F. J., and Morita, R. Y., Significance of the temperature characteristic of growth. J. Bact.95 (1968) 736–737.Google Scholar
  19. 19.
    Harder, W., and Veldkamp, H., A continuous culture study of an obligately psychrophilic Pseudomonas species. Arch. Mikrobiol.59 (1967) 123–130.Google Scholar
  20. 20.
    Harder, W., and Veldkamp, H., Competition of marine psychrophilic bacteria at low temperatures. Antonie van Leeuwenhoek37 (1971) 51–63.Google Scholar
  21. 21.
    Hölzinger, W. J., Die Auswirkungen von Sulfitzellstoff-Abwässern auf den Chemismus der Donau zwischen Ehingen und Ulm und die Massenentwicklung von Leptomitus lacteus (Röth) Ag. und Sphaerotilus natans. Kütz. Arch. Hydrobiol.2/3 suppl. 52 (1978) 241–311.Google Scholar
  22. 22.
    Ingraham, J. L., Growth of psychrophilic bacteria. J. Bact.76 (1958) 75–80.Google Scholar
  23. 23.
    Ingraham, J. L., and Stokes, J. L., Psychrophilic bacteria. Bact. Rev.23 (1959) 97–108.Google Scholar
  24. 24.
    Inniss, W. E., Interaction of temperature and psychrophilic microorganisms. A. Rev. Microbiol.29 (1975) 445–465.Google Scholar
  25. 25.
    Inniss, W. E., and Ingraham, J. L., Microbial life at low temperatures: Mechanisms and molecular aspects, in: Microbial Life in Extreme Environments, pp. 73–104. Ed. D. J. Kushner. Academic Press, London 1978.Google Scholar
  26. 26.
    Kawamoto, S., Kojima, K., Hanada, T., Iokuyama, S., Yashima, S., and Eguchi, Y., Cold resistant mutants of Escherichia coli. Agric. Biol. Chem.48 (1984) 1097–1101.Google Scholar
  27. 27.
    Law, B. A., Reviews of the progress of dairy science: enzymes of psychrotrophic bacteria and their effects in milk and milk products. J. Dairy Res.46 (1979) 573–588.Google Scholar
  28. 28.
    Luisetti, J., and Gaignard, J. L., Gel de printemps et bactéries glaçogènes. Arboric fruit.375 (1985) 46–48.Google Scholar
  29. 29.
    Maki, L. R., Galyan, E. L., Chang-Chien, M., and Caldwell, D. R., Ice nucleation induced by Pseudomonas syringae. Appl. Microbiol.28 (1974) 256–259.Google Scholar
  30. 30.
    Malcolm, N. L., Subunit structure and function of Micrococcus cryophilus glutamyl transfer RNA synthetase. Biochim. biophys. Acta190 (1969) 347–357.Google Scholar
  31. 31.
    Marr, A. G., and Ingraham, J. L., Effect of temperature on the composition of fatty acids in Escherichia coli. J. Bact.84 (1962) 1260–1267.Google Scholar
  32. 32.
    McGibbon, L., and Russel, N. J., The turnover of phospholipids in the psychrophilic bacterium Micrococcus cryophilus during adaptation to changes in growth temperature. J. gen. Microbiol.131 (1985) 2293–2302.Google Scholar
  33. 33.
    Morita, R. Y., Psychrophilic bacteria. Bact. Rev.39 (1975) 144–167.Google Scholar
  34. 34.
    Nash, C. H., Grant, D. W., and Sinclair, N. A., Thermolability of protein synthesis in a cell-free system from the obligately psychrophilic yeast Candida gelida. Can. J. Microbiol.15 (1969) 339–343.Google Scholar
  35. 35.
    O'Donovan, G. A., and Ingraham, J. L., Cold-sensitive mutants of Escherichia coli resulting from increased feedback inhibition. Proc. natn. Acad. Sci. USA54 (1965) 451–457.Google Scholar
  36. 36.
    Olsen, R. H., and Metcalf, E. S., Conversion of mesophilic to psychrophilic bacteria. Science162 (1968) 1288–1289.Google Scholar
  37. 37.
    Pacha, R. E., Characteristic of Cytophaga psychrophila (Borg) isolated during outbreaks of bacterial cold-water disease. Appl. Microbiol.16 (1968) 97–101.Google Scholar
  38. 38.
    Piton, C., and Richard, J., Détermination du taux et de la nature des Pseudomonas psychrotrophes intervenant dans les deux sources principales de contamination microbienne du lait à la ferme: la peau des mamelles et le matériel de traite. Sci. Alim.5 (1985) 13–16.Google Scholar
  39. 39.
    Potier, P., Hipkiss, A. R., and Kushner, D. J., Protein turnover in a psychrotrophic bacterium. Archs Microbiol.142 (1985) 28–33.Google Scholar
  40. 40.
    Punsola, L., and Guarro, J., Keratinomyces ceretanicus sp. nov. a psychrophilic dermatophyte from soil. Mycopathologia85 (1984) 185–190.Google Scholar
  41. 41.
    Rizk, J., Accidents transfusionnels d'origine bactérienne. Méthodes de prévention. Thèse Doct. Med., Lyon 1985.Google Scholar
  42. 42.
    Russel, N. J., The regulation of membrane fluidity in bacteria by acyl chain length changes, in: Biomembranes, vol. 12. Membrane Fluidity, pp. 329–347. Eds M. Kates and L. A. Manson. Plenum, New York 1984.Google Scholar
  43. 43.
    Schmidt-Nielsen, S., Über einige psychrophile Mikroorganismen und ihr Vorkommen. Zentbl. Bakt. ParasitKde9 (1902) 145–147.Google Scholar
  44. 44.
    Shaw, M. K., Effect of abrupt temperature shift on the growth of mesophilic and psychrophilic yeasts. J. Bact.93 (1967) 1332–1336.Google Scholar
  45. 45.
    Stokes, J. L., General biology and nomenclature of psychrophilic microorganisms, in: Recent Progress in Microbiology, pp. 187–192. University of Toronto Press, Toronto 1963.Google Scholar
  46. 46.
    Svensson, B. H., Different temperature optima for methane formation when enrichments form acid peat are supplemented with acetate or hydrogen. Appl. environ. Microbiol.48 (1984) 389–394.Google Scholar
  47. 47.
    Tai, P. C., and Jackson, H., Growth and respiration of an obligate psychrophile, Micrococcus cryophilus, and its mesophilic mutants. Can. J. Microbiol.15 (1969) 1151–1155.Google Scholar
  48. 48.
    Tai, P. C., Kessler, D. P., and Ingraham, J. L., Cold sensitive mutations in Salmonella typhimurium which affects ribosome synthesis. J. Bact.97 (1969) 1298–1304.Google Scholar
  49. 49.
    Ward, E. W. B., Temperature-induced changes in the hyphal morphology of the psychrophile Sclerotinia borealis. Can. J. Bot.46 (1968) 524–525.Google Scholar
  50. 50.
    Westlake, D. W., Jobson, A., Phillippe, R., and Cook, F. D., Biodegradability and crude oil composition. Can. J. Microbiol.20 (1974) 915–928.Google Scholar
  51. 51.
    Whitman, P. A., and Marshall, R. T., Isolation of psychrophilic bacteriophage-host systems from refrigerated food products. Appl. Microbiol.22 (1971) 220–223.Google Scholar

Copyright information

© Birkhäuser Verlag 1986

Authors and Affiliations

  • A. -M. Gounot
    • 1
  1. 1.MicrobiologieUniversité Claude Bernard Lyon 1Villeurbanne Cedex(France)

Personalised recommendations