, Volume 33, Issue 8, pp 979–984 | Cite as

Age and evolution of bacteria

  • H. E. Müller


Age and evolution of bacteria can be estimated, including facts and hypotheses belonging to morphology, biochemistry, paleontology, ecology and pathogenicity. The corresponding dates are summarized in the following.

About 3.5×109 years: Origin of heterotrophic eobiontes.—About 3.0×109 years: The increasing lack of prebiogenic substances is due to the evolution of the respiratory pathway, that is due to the evolution of the photoautotrophy and now released O2 is due to the evolution of strictly aerobic cells. There is, simultaneously, a transition of spheres to long forms, development of an amoebalike motility, the evolution of spirochetes and the substitution of cholesterol for cardiolipin in the more evolved cells (i.e. strictly aerobic cells etc.).—About 2.0×1.0×109 years: Evolution of the eucyte by symbiosis of a great, primitive, anaerobic, cholesterol-containing cell with a little, strictly aerobic, cardiolipin-containing cell, with a spirochete and in some extent also with photoautotrophic cell.—About 1.0×109 years (maximum: 1.8–1.5×109 years, minimum: 7×108 years): Evolution of metazoa and begin of cell differentiation.—About 2.0–1.0×109 years: Evolution of the bacterial murein sacculus and then development of flagella mediated motility.—About 6×108 years (maximum:1.0×109 years, minimum: 4.5×108 years): Evolution of the gram-negative cell wall.—About 4.0×108 years: Evolution of the gram-positive cell wall.—About 5.0×108 years: Gram-negative, strictly anaerobic bacteria become the first enteric bacteria in coelenterates. About 4.0×108 years: gram-negative, microaerophilic bacteria become Enterobacteriaceae in vertebrates in addition to the strictly anaerobic organisms.—About 3.0–2.0×108 years: Consolidation of the Salmonella in reptiles.—About 2.0–1.5×108 years: Consolidation of Escherichia and other coliform species in mammals.—About 106 years: Evolution of typically human pathogenic organisms, transmitted in homogeneous-homonomous infection ways, i.e. N. gonorrhoeae, S. typhi, T. pallidum, etc.


Cholesterol Cell Wall Cell Differentiation Respiratory Pathway Paleontology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 3.
    S. Orla-Jensen, Zentbl. Bakt. Hyg. II,22, 305 (1909).Google Scholar
  2. 4.
    M. Calvin, Chemical Evolution. Clarendon Press, Oxford 1969.Google Scholar
  3. 5.
    R. W. Kaplan, Der Ursprung des Lebens. Thieme, Stuttgart 1972.Google Scholar
  4. 6.
    H. Rahmann, Die Entstehung des Lebendigen. G. Fischer, Stuttgart 1972.Google Scholar
  5. 7.
    E.S. Barghoorn, Scient. Am.224, 30 (1971).Google Scholar
  6. 8.
    H.D. Pflug, Naturwissenschaften54, 236 (1966).CrossRefGoogle Scholar
  7. 9.
    J.W. Schopf, Biol. Rev.45, 319 (1970).CrossRefGoogle Scholar
  8. 10.
    J.W. Schopf and D. Zeller-Oehler, Science193, 47 (1976).Google Scholar
  9. 11.
    H.E. Müller, Naturwissenschaften63, 224 (1976).CrossRefPubMedGoogle Scholar
  10. 12.
    K. Decker, K. Jungermann and R. K. Thauer, Angew. Chem.82, 153 (1970).Google Scholar
  11. 13.
    S. Razin and J. G. Tully, J. Bacteriol.102, 306 (1970).PubMedGoogle Scholar
  12. 14.
    I. M. Robinson, M. J. Allison and P. A. Hartman, Int. J. syst. Bacteriol.25, 173 (1975).Google Scholar
  13. 15.
    I. M. Robinson and M. J. Allison, Int. J. syst. Bacteriol.25, 182 (1975).Google Scholar
  14. 16.
    W. Bredt, Med. Microbiol. Immunol.157, 169 (1972).Google Scholar
  15. 17.
    R. F. Whitcomb and D. L. Williamson, Ann. N. Y. Acad. Sci.266, 260 (1975).PubMedGoogle Scholar
  16. 18.
    L. P. Brinton and W. Burgdorfer, Int. J. syst. Bacteriol.26, 554 (1976).Google Scholar
  17. 19.
    L. Margulis, Science161, 1020 (1968).Google Scholar
  18. 20.
    L. Margulis, Origin of Eucaryotic Cells. Yale University Press, New Haven 1970.Google Scholar
  19. 21.
    P. H. Raven, Science169, 641 (1970).PubMedGoogle Scholar
  20. 22.
    M. Ikawa, Bact. Rev.31, 54 (1967).PubMedGoogle Scholar
  21. 23.
    C. F. Fox and A. D. Keith, Membrane Molecular Biology. Sinauer, Stanford, Conn., 1972.Google Scholar
  22. 24.
    C. B. Hirschberg and E. P. Kennedy, PNAS69, 648 (1972).PubMedGoogle Scholar
  23. 25.
    N. H. Horowitz, Proc. nat. Acad. Sci., USA31, 153 (1945).Google Scholar
  24. 26.
    E. B. Lewis, Cold Spring Harbor Symp. Quant. Biol.16, 159 (1951).PubMedGoogle Scholar
  25. 27.
    F. Müller, H. Feddersen and M. Segerling, Immunology24, 711 (1973).PubMedGoogle Scholar
  26. 28.
    F. Müller and M. Segerling, Zentbl. Bakt. Hyg., I, Orig.,220, 494 (1972).Google Scholar
  27. 29.
    N. R. Krieg, Bact. Rev.40, 55 (1976).PubMedGoogle Scholar
  28. 30.
    E. Schnepf, E. Hegewald and C. J. Soeder, Arch. Mikrobiol.98, 133 (1974).Google Scholar
  29. 31.
    F. M. Burnet, Naturgeschichte der Infektionskrankheiten. S. Fischer, Frankfurt a. M. 1971.Google Scholar
  30. 32.
    I. Dimow, Zentbl. Bakt. Hyg., Ref.,214, 335 (1968).Google Scholar
  31. 33.
    M. Roggendorf and H. E. Müller, Zentbl. Bakt. Hyg., I, Orig.,236, 22 (1976).Google Scholar

Copyright information

© Birkhäuser Verlag 1977

Authors and Affiliations

  • H. E. Müller
    • 1
  1. 1.Staatliches Medizinaluntersuchungsamt BraunschweigBraunschweig(Federal Republic of Germany)

Personalised recommendations