, Volume 43, Issue 3, pp 259–265 | Cite as

Litter production and decomposition in a terra-firme forest of Central Amazonia

  • F. J. Luizão
  • H. O. R. Schubart


Chemical and biological aspects of litter production and decomposition were studied in three distinct areas of the Central Amazon. Litter production was measured during three years, employing the litter trap technique, with adapted conical collectors. Leaf litter decomposition was studied in experiments, over five-month-periods with repetitions for the dry and wet seasons, using the nylon-mesh bag technique. The greatest litter production took place during the drier period of the year, mainly from June to October, while decomposition processes were more accentuated in the wet season: in the plateau site, one-half, of the litter disappears, according to a mathematical model, in about, 218 days under dry season conditions as against 32 days in the wet season. In the rainy season, weight reduction and mineral losses from decomposing leaves occurred more rapidly, owing to the intense biological activity on the material during this period. Particularly noticeable was the intense activity of termites in organic matter breakdown and mineral removal, and the extensive root penetration in the decomposing leaves, which removed some minerals but increased the amounts of other. Leaching effects were also quite noticeable in this period. During the rainy season, in the latosol sites, termites were responsible for more than 40% of the removal of decomposing leaves. While intense biological activity appears to be the major factor responsible for weight reduction and loss of many minerals, as well as for the accumulation of some other minerals (mainly zinc iron and aluminium) in the decomposing material, leaching seems to be the major factor responsible for the loss of certain minerals such as potassium, boron and copper.

Key words

Litter litter decomposition nutrients cycle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ayres, I., and Guerra, R. A. T., Àgua como fator limitante na distribuição das minhocas (Annelida, Oligochaeta) da Amazônia' Central. Acta amazon.11 (1981) 77–86.Google Scholar
  2. 2.
    Bocock, K. L., and Gilbert, O. J. W., Changes in the amount of nitrogen in decomposing leaf litter under different woodland conditions. Plant Soil9 (1957) 179–185.CrossRefGoogle Scholar
  3. 3.
    Burges, A., and Raw, F., Biologia del Suelo, Ed. Omega, Barcelona 1971.Google Scholar
  4. 4.
    Butler, J. H. A., and Buckerfield, J. C., Digestion of lignin by termites. Soil Biol. Biochem.11 (1979) 507–513.CrossRefGoogle Scholar
  5. 5.
    Camargo, M. N., and Falesi, I. C.: Soils of the Central Plateau and Transamazonic Highway of Brazil, in: Soll Management in Tropical America, pp. 25–45. Eds E. Bornemiza and A. Alvarado Soil Science Dept, North Carolina State Univ., Raleigh, N. C. 1975.Google Scholar
  6. 6.
    Camargo, W. V. A., Fernandes, N. S., and Santiago A. M. H., Estudos de elementos minerais de interesse pecuário, em regiões da Amazônia Legal. Arq. Inst. Biol. São Paulo47 (1980) 83–111.Google Scholar
  7. 7.
    Carpenter, R. S., Comparisons of equations for decay of leaf litter in tree-hole ecossystems. Oikos39 (1982) 17–22.Google Scholar
  8. 8.
    Chauvel, A., Contribuição para o estudo da evolução dos latossolos amarelos, distróficos, argilosos, na borda do platô na região de Manaus. Mecanismos de gibbsitização. Acta amazon.11, (1981) 227–245.Google Scholar
  9. 9.
    Chauvel, A., Lucas, Y., and Boulet, R., On the genesis of the soil mantle of the region of Manaus, Central Amazonia, Brazil. Experientia,43 (1987) 234–241.Google Scholar
  10. 10.
    Epstein, E., Nutrição mineral das plantas: princípios e perspectivas. EDUSP, São Paulo 1975.Google Scholar
  11. 11.
    Ewel, J. J., Litter fall and leaf decomposition in a tropical forest succession in eastern Guatemala. J. Ecol.64 (1976) 293–308.Google Scholar
  12. 12.
    Fittkau, E. J., and Klinge, H., On biomass and trophic structure of the Central Amazonian rain forest. Biotropica5 (1973) 2–14.Google Scholar
  13. 13.
    Fournier, M. E. H., and Fournier, L. A., Producción, descomposición y invertebrados del mantillo en varias etapas de la sucessión en Ciudad Cólon, Costa Rica. Rev. Biol. Trop.25 (1977) 275–288.Google Scholar
  14. 14.
    Franken, M., Irmler, U., and Klinge, H., Litterfall in inundation, riverine and terra firme forest of Central Amazonia. Trop. Ecol.20 (1979) 225–235.Google Scholar
  15. 15.
    Golley, F. B., McGinnis, J. T., Clements, R. G., Child, G. I. and Duever, M. J., Ciclagem de Minerais em um Ecossistema da Floresta Tropical Úmida. EPU/EDUSP, São Paulo 1978.Google Scholar
  16. 16.
    Gosz, J. R., Likens, G. E., and Bormann, F. H., Organic matter and nutrient dynamics of the forest and forest floor in the Hubbard Brook forest. Oecologia (Berl.)22 (1976) 305–320.CrossRefGoogle Scholar
  17. 17.
    Guillaumet, J. L., Some structural and floristic aspects of the forest. Experientia43 (1987) 241–251.Google Scholar
  18. 18.
    Herrera, R., Jordan, C. F., Klinge, H., and Medina, E., Amazon ecosystems: their structure and functioning with, particular emphasis on nutrients. Interciencia3 (1978) 223–232.Google Scholar
  19. 19.
    Howard-Williams, C., Nutritional quality and calorific value of Amazonian forest litter. Amazoniana5 (1974) 67–75.Google Scholar
  20. 20.
    Irmler, U., and Furch, K., Weight, energy, and nutrient changes during the decomposition of leaves in the emersion phase of Central-Amazonian innundation forests. Pedobiologia20 (1980) 118–130.Google Scholar
  21. 21.
    Jordan, C. F., Stem, flow and nutrient transfer in a tropical rain forest. Oikos31 (1978) 257–263.Google Scholar
  22. 22.
    Jordan, C. F., Golley, F. B., and Hall, J., Nutrient scavenging of rainfall by the canopy of an Amazonian rain forest. Biotropica12, (1980) 61–66.Google Scholar
  23. 23.
    Jordan, C. F., and Herrera, R., Les forêts ombrophiles tropicales: les éléments nutritifs, sont-ils réellement un facteur critique?. Nat. Ress.17 (1981) 8–15.Google Scholar
  24. 24.
    Kira, T., Community architecture and organic matter dynamics in tropical lowland rain forests of Southeast Asia with special reference to Pasoh Forest, West Malaysia, in: Tropical Trees as Living Systems. Eds. P. B. Tomlinson and M. H. Zimmermann 1978.Google Scholar
  25. 25.
    Klinge, H., Bilanzierung von Hauptnährstoffen im Ökosystem tropischer Regenwälder (Manaus)-Vorläufige Daten Biogeographica7 (1976) 59–77.Google Scholar
  26. 26.
    Klinge, H., Preliminary data on nutrient release from decomposing leaf litter in a neotropical rain forest. Amazoniana6 (1977a). 196–202.Google Scholar
  27. 27.
    Klinge, H., Fine litter production and nutrient return to the soil in three natural forest stands in eastern Amazonia. Geol. Ecol. Trop.1 (1977b) 159–167.Google Scholar
  28. 28.
    Klinge, H., and Rodrigues, W. A., Litter production in an area of Amazonian terra firme forest. Parts I, II, Amazoniana1 (1968) 287–310.Google Scholar
  29. 29.
    Koelling, M. R., and Kucera, C. L., Dry matter losses and mineral leaching in bluestem standing crop and litter. Ecology46 (1965) 529–532.Google Scholar
  30. 30.
    Luizão, F. J., Produção e decomposição da liteira em floresta de terra firme da Amazônia Central. Aspectos químicos e biológicos da lixiviação dos nutrientes da liteira. Dissertação de Mestrado. INPA/FUA, Manaus 1982.Google Scholar
  31. 31.
    Medwecka-Kornas A., Litter production, in: Methods of Study in Soil Ecology. pp. 139–143. Ed. J. Phillipson. UNESCO/IBP, Genève 1970.Google Scholar
  32. 32.
    Pires, J. M., A diversificação florística da mata Amazônica. Anais XXV Congr. Nac. Botânica, pp. 241–243. Mossoró, RN (1974).Google Scholar
  33. 33.
    Reis, M. J. O., Estudo preliminar sobre o crescimento das raízes superficiais em uma floresta de terra firme da Amazônia Central, relacionando com a precipitação e a queda de liteira. Dissertação de Mestrado. INPA/FUA, Manaus 1985.Google Scholar
  34. 34.
    Rodin, L. E., and Basilevich, N. I., Production and Mineral Cycling in Terrestrial Vegetation. Oliver and Boyd. Edinburgh and London 1967.Google Scholar
  35. 35.
    Sanchez, P. A., Properties and management of soils in the tropics. Wiley, New York 1976.Google Scholar
  36. 36.
    Silva, M. F. F., Produção anual de serrapilheira e seu conteúdo mineralógico em mata tropical de terra firme na área do rio Tocantins-Pará. Dissertação de Mestrado. INPA/FUA, Manaus 1982.Google Scholar
  37. 37.
    Silva, M. F. F., and Lobo, A. M. G., Nota sobre a deposição de matéria orgânica em floresta de terra firme, várzea e igapó. Bol. mus. Par. E. Goeldi Bot.56 (1982) 1–13.Google Scholar
  38. 38.
    Singh, K. P., Litter production and nutrient turnover in deciduous forest of Varanasi. Proc. Symp. rec. Adv. trop. Ecol. (1968), 655–665.Google Scholar
  39. 39.
    Stark, N., and Jordan, C. F., Nutrient retention in the root mat of an Amazonian rain forest. Ecology59 (1978) 434–437.Google Scholar
  40. 40.
    Uhl, C., and Jordan, C.F., Sucession and nutrient dynamics following forest cutting and burning in Amazonia. Ecology65 (1984) 1476–1490.Google Scholar
  41. 41.
    Wallwork, J. A., Ecology of soil animals. McGraw-Hill, London 1970.Google Scholar
  42. 42.
    Went, F. W., and Stark, N., Mycorrhiza. BioScience18 (1968a) 1035–1039.Google Scholar
  43. 43.
    Went, F. W., and Stark, N., The biological and mechanical role of soil fungi. Proc. natn. Acad. Sci. USA60 (1968b) 497–504.Google Scholar
  44. 44.
    Wieder, R. K., and Lang, G. E., A critique of the analytical methods used in examining decomposition data obtained from litter bags. Ecology63 (1982) 1636–1642.Google Scholar
  45. 45.
    Witkamp, M., Soils as components of ecosystems. A. Rev. Ecol. System.2 (1971) 85–110.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag 1987

Authors and Affiliations

  • F. J. Luizão
    • 1
  • H. O. R. Schubart
    • 1
  1. 1.Divisão de BioecologiaInstituto Nacional de Pesquisas da AmazôniaManausBrazil

Personalised recommendations