Advertisement

Experientia

, Volume 43, Issue 11–12, pp 1173–1175 | Cite as

Calcium channel modulation by β-adrenergic neurotransmitters in the heart

  • H. Reuter
Reviews

Summary

Calcium ions play a crucial role in the regulation of the heart beat. During each action potential Ca2+ ions flow into the cell and are directly and indirectly involved in generation of pacemaker potentials and of contractile force. Adrenergic and cholinergic neurotransmitters modulate Ca2+ influx. The most detailed analysis has been made on the mechanism of the β-adrenergic effect on calcium channels in cardiac cell membranes. This is briefly summarized in a personal account, while for more detailed information the reader is referred to more extensive recent reviews16, 22.

Key words

Calcium channels catecholamines β-adrenoceptors cyclic AMP 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bean, B.P., Nowycky, M.C., and Tsien, R.W., β-Adrenergic modulation of calcium channels in frog ventricular heart cells. Nature307 (1984) 371–375.CrossRefPubMedGoogle Scholar
  2. 2.
    Brum, G., Flockerzi, V., Hofmann, F., Osterrieder, W., and Trautwein, W., Injection of catalytic subunit of cAMP-dependent protein kinase into isolated cardiac myocytes. Pflügers Arch.398 (1983) 147–154.CrossRefGoogle Scholar
  3. 3.
    Brum, G., Osterrieder, W., and Trautwein W., β-Adrenergic increase in the calcium conductance of cardiac myocytes studied with the patch clamp. Pflügers Arch.401 (1984) 111–118.CrossRefGoogle Scholar
  4. 4.
    Cachelin, A.B., de Peyer, J.E., Kokubun, S., and Reuter, H., Calcium channel modulation by 8-bromo-cyclic AMP in cultured heart cells. Nature304 (1983) 462–464.CrossRefGoogle Scholar
  5. 5.
    Flockerzi, V., Oeken, H.-J., Hofmann, F., Pelzer, D., Cavalié, A., and Trautwein, W., Purified dihydropyridine-binding site from skeletal muscle t-tubules is a functional calcium channel. Nature323 (1986) 66–68.PubMedGoogle Scholar
  6. 6.
    Hamill, O.P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J., Improved patch-clamp techniques for high-resolution current recording from cells and cell free membrane patches. Pflügers Arch.391 (1981) 85–100.CrossRefGoogle Scholar
  7. 7.
    Kameyama, M., Hescheler, J., Hofmann, F., and Trautwein, W., Modulation of Ca current during the phosphorylation cycle in the guinea pig heart. Pflügers Arch.407 (1986) 123–128.CrossRefGoogle Scholar
  8. 8.
    Nilius, B., Hess, P., Lansman, J.B., and Tsien, R.W., A novel type of calcium channel in ventricular heart cells. Nature316 (1985) 443–446.PubMedGoogle Scholar
  9. 9.
    Noma, A., Kotake, H., and Irisawa, H., Slow inward, current and its role mediating the chronotropic effect of epinephrine in the rabbit sinoatrial node. Pflügers Arch.388 (1980) 1–9.CrossRefGoogle Scholar
  10. 10.
    Osterrieder, W., Brum, G., Hescheler J., Trautwein, W., Flockerzi, V., and Hofmann, F., Injection of subunits of cyclic AMP-dependent protein kinase into cardiac myocytes modulates Ca2+ current. Nature298 (1982) 576–578.CrossRefPubMedGoogle Scholar
  11. 11.
    Otsuka, M., Die Wirkung von Adrenalin auf Purkinje-Fasern von Säugetierherzen. Pflügers Arch.266 (1958) 512–517.CrossRefGoogle Scholar
  12. 12.
    Reuter, H., Über die Wirkung von Adrenalin auf den zellulären Ca-Umsatz des Meerschweinchenvorhofs. Naunyn-Schmiedebergs Arch. Pharmak.251 (1965) 401–412.Google Scholar
  13. 13.
    Reuter, H., Strom-Spannungsbeziehungen von Purkinje-Fasern bei verschiedenen extrazellulären Kalzium-Konzentrationen und unter Adrenalineinwirkung. Pflügers Arch.287 (1966) 357–367.CrossRefGoogle Scholar
  14. 14.
    Reuter, H., The dependence of slow inward current in Purkinje fibres on the extracellular calcium concentration. J. Physiol.192 (1967) 479–492.PubMedGoogle Scholar
  15. 15.
    Reuter, H., Localization ofbeta-adrenergic receptors and effects of noradrenaline and cyclic nucleotides on action potentials, ionic currents and tension in mammalian cardiac muscle. J. Physiol.242 (1974) 429–451.PubMedGoogle Scholar
  16. 16.
    Reuter, H., Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature301 (1983) 569–574.CrossRefPubMedGoogle Scholar
  17. 17.
    Reuter, H., and Scholz, H., The regulation of the calcium conductance of cardiac muscle by adrenaline. J. Physiol.264 (1977) 49–62.PubMedGoogle Scholar
  18. 18.
    Reuter, H., and Wollert, U., Über die Wirkung verschiedener sympathomimetischer Amine auf Kontraktionskraft und45Ca-Aufnahme isolierter Meerschweinchenvorhöfe. Naunyn-Schmiedebergs Arch. Pharmak.258 (1967) 288–296.Google Scholar
  19. 19.
    Reuter, H., Kokubun, S., and Prod'hom, B., Properties and modulation of cardiac calcium channels. J. exp. Biol.124 (1986) 191–201.PubMedGoogle Scholar
  20. 20.
    Reuter, H., Stevens, C.F., Tsien, R.W., and Yellen, G., Properties of single calcium-channels in cardiac cell culture. Nature297 (1982) 501–504.PubMedGoogle Scholar
  21. 21.
    Trautwein, W., Generation and conduction of impulses in the heart as affected by drugs. Pharmac. Rev.15 (1963) 277–332.Google Scholar
  22. 22.
    Tsien, R.W., Bean, B.P., Hess, P., Lansmann, J.B., Nilius, B., and Nowycky, M.C., Mechanisms of calcium channel modulation by β-adrenergic agents and dihydropyridine calcium antagonists. J. molec. cell. Cardiol.18 (1986) 691–710.Google Scholar
  23. 23.
    Vassort, G., Rougier, O., Garnier, D., Sauviat, M.P., Coraboeuf, E., and Gargouil, Y.M., Effects of adrenaline on membrane inward currents during the cardiac action potential. Pflügers Arch.309 (1969) 70–81.CrossRefGoogle Scholar
  24. 24.
    Weidmann, S., Elektrophysiologie der Herzmuskelfaser. Verlag Hans Huber, Bern 1956.Google Scholar

Copyright information

© Birkhäuser Verlag 1987

Authors and Affiliations

  • H. Reuter
    • 1
  1. 1.Department of PharmacologyUniversity of BernBern(Switzerland)

Personalised recommendations