Communications in Mathematical Physics

, Volume 78, Issue 2, pp 247–280 | Cite as

Markov Partitions for dispersed billiards

  • L. A. Bunimovich
  • Ya. G. Sinai


Markov Partitions for some classes of billiards in two-dimensional domains on ℝ2 or two-dimensional torus are constructed. Using these partitions we represent the microcanonical distribution of the corresponding dynamical system in the form of a limit Gibbs state and investigate the character of its approximations by finite Markov chains.


Neural Network Dynamical System Statistical Physic Complex System Markov Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sinai, Ya.G.: Russ. Math. Survey25, 137–189 (1970)Google Scholar
  2. 2.
    Sinai, Ya.G.: Funct. Anal. Appl.2, 64–89 (1968);2, 70–80 (1968)CrossRefGoogle Scholar
  3. 3.
    Bowen, R.: Equilibrium states and ergodic theory of Anosov diffeomorphisms. In: Lecture notes in mathematics, Vol. 470, p. 108. Berlin, Heidelberg, New York: Springer 1975Google Scholar
  4. 4.
    Ruelle, D.: Thermodynamic formalism, p. 180. New York: Addison-Wesley 1978Google Scholar
  5. 5.
    Anosov, D.V., Sinai, Ja.G.: Russ. Math. Survey22, 103–167 (1967)Google Scholar
  6. 6.
    Gallavotti, G.: Lectures on billiards. In: Lecture notes in physics, Vol. 38, pp. 236–296. Berlin, Heidelberg, New York: Springer 1975Google Scholar
  7. 7.
    Keller, G.: Diplomarbeit, p. 203. Erlangen (1977)Google Scholar
  8. 8.
    Sinai, Ya.G.: Theory of phase transitions. Rigorous results, p. 160. Moscow: Nauka 1980Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • L. A. Bunimovich
    • 1
  • Ya. G. Sinai
    • 1
  1. 1.L. D. Landau Institute for Theoretical PhysicsAcademy of SciencesMoscowUSSR

Personalised recommendations