Communications in Mathematical Physics

, Volume 79, Issue 2, pp 167–180

The Thomas-Fermi-von Weizsäcker theory of atoms and molecules

  • Rafael Benguria
  • Haim Brezis
  • Elliott H. Lieb
Article

Abstract

We place the Thomas-Fermi-von Weizsäcker model of atoms on a firm mathematical footing. We prove existence and uniqueness of solutions of the Thomas-Fermi-von Weizsäcker equation as well as the fact that they minimize the Thomas-Fermi-von Weizsäcker energy functional. Moreover, we prove the existence of binding for two very dissimilar atoms in the frame of this model.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lieb, E. H., Simon, B.: Adv. Math.23, 22–116 (1977)CrossRefGoogle Scholar
  2. 2.
    von Weizsäcker, C. F.: Z. Phys.96, 431–458 (1935)CrossRefGoogle Scholar
  3. 3.
    Kompaneets, A. S., Pavloskii, E. S.: Sov. Phys. JETP4, 328–336 (1957)Google Scholar
  4. 4.
    Benguria, R.: The von Weizsäcker and exchange corrections in the Thomas-Fermi theory. Princeton University Thesis: June 1979 (unpublished)Google Scholar
  5. 5.
    Balàzs, N. L.: Phys. Rev.156, 42–47 (1967)CrossRefGoogle Scholar
  6. 6.
    Gombás, P.: Acta Phys. Hung.9, 461–469 (1959)Google Scholar
  7. 7.
    Stampacchia, G.: Equations elliptiques du second ordre à coefficients discontinus. Montreal: Presses de l'Univ. 1965Google Scholar
  8. 8.
    Bers, L., Schechter, M.: Elliptic equations in Partial Differential Equations. New York: Interscience pp. 131–299. 1964Google Scholar
  9. 9.
    Trudinger, N.: Ann. Scuola Norm. Sup. Pisa27, 265–308 (1973)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Rafael Benguria
    • 1
  • Haim Brezis
    • 2
  • Elliott H. Lieb
    • 3
  1. 1.The Rockefeller UniversityNew YorkUSA
  2. 2.Département de MathématiquesUniversité Paris VIParis Cedex 05France
  3. 3.Departments of Mathematics and PhysicsPrinceton UniversityPrincetonUSA

Personalised recommendations