Advertisement

Communications in Mathematical Physics

, Volume 81, Issue 1, pp 127–147 | Cite as

Nonequilibrium measures which exhibit a temperature gradient: Study of a model

  • A. Galves
  • C. Kipnis
  • C. Marchioro
  • E. Presutti
Article

Abstract

We give some rules to define measures which could describe heat flow in homogeneous crystals. We then study a particular model which is explicitly solvable: the one dimensional nearest neighborhood Ising model. We analyze two cases. In the first one the spins at the two boundaries interact with reservoirs at different temperatures; in the thermodynamical limit the measure we introduce converges locally to Gibbs measures and a temperature profile is so derived. We obtain an explicit expression for the thermal conductivity coefficient which depends on the temperature. In the second case we study the asymptotic behavior starting from an initial state in which each half of the space is at a different temperature. We find again a temperature profile which asymptotically obeys the heat equation with the thermal conductivity coefficient previously derived. From a mathematical point of view, the analysis of the invariant measure is made possible by studying a “time-reversed” process related to a graphical representation of an associated process. This provides us with an explicit formula for then-fold correlation function and we study the limiting behavior using both this representation (for proving an exchangeability result) and a Donsker-type, spacetime renormalization procedure.

Keywords

Thermal Conductivity Correlation Function Asymptotic Behavior Heat Flow Temperature Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Spohn, H., Lebowitz, J.L.: Commun. Math. Phys.54, 97 (1977); Lebowitz, J.L., Spohn, H.: J. Stat. Phys. (to appear); Aizenmann, M., Spohn, H.: J. Stat. Phys.21, 23 (1979); O'Connor, A.J., Lebowitz, J.L.: J. Math. Phys.15, 692–703 (1974)CrossRefGoogle Scholar
  2. 2.
    Goldstein, S., Lebowitz, J.L., Presutti, E.: Mechanical systems with stochastic boundaries. In: Lecture at the Colloqium on “Random fields: rigorous results in statistical mechanics and quantum field theory”. Esztergon, Hungary (1979)Google Scholar
  3. 3.
    Georgii, H.O.: “Canonical Gibbs measures. In: Lecture Notes in Mathematics, Vol. 760. Berlin, Heidelberg, New York: Springer 1979Google Scholar
  4. 4.
    Ruelle, D.: Statistical mechanics. New York: Benjamin 1968Google Scholar
  5. 5.
    Revuz, D.: Markov chains. North Holland: American Elsevier 1975Google Scholar
  6. 6.
    Ruelle, D.: Commun. Math. Phys.9, 267 (1968)CrossRefGoogle Scholar
  7. 7.
    Liggett, T.: The stochastic evolution of infinite systems of interacting particles. In: Lecture Notes in Mathematics, Vol. 598, pp. 188–248. Berlin, Heidelberg, New York: Springer 1976Google Scholar
  8. 8.
    Bertein, F., Galves, A.: Z. Wahrsch. Verw. Gebiete41, 73–85 (1977); Bertein, F., Galves, A.: C. R. Acad. Sci.285, 10 (1977)CrossRefGoogle Scholar
  9. 8a.
    Griffeath, D.: Ann. Prob.6, 379–387 (1978); Harris, T.: Ann. Prob.6, 355–378 (1978); Griffeath, D.: Graphical treatment of associate process. Séminaire de l'Ecole Polytechnique (1975); Neveu, J.: Evolution Markoviennes. Séminaire sur les processus markoviens à une infinité de particules, Ecole Polytechnique (1974); Spitzer, F.: Random fields and interacting particle systems MAA Seminar. Williamstown, Massachusetts (1971)Google Scholar
  10. 9.
    Feller, W.: An introduction to probability theory and its applications, I, II, 3rd edition. New York: Wiley and Sons 1967; Simon, B.: Functional integration and quantum physics. London, New York: Academic Press 1979Google Scholar
  11. 10.
    Billingsley, P.: Convergence of probability measures. New York: Wiley and Sons 1968Google Scholar
  12. 11.
    Metivier, M.: Sufficient conditions for tightness and weak convergence of a sequence of processes. Internal report, University of Minnesota, Minneapolis; Rebolledo, R.: La méthode des martingales appliquées à la convergence en loi des processus. Mém. Soc. Math. Fr. (to appear)Google Scholar
  13. 12.
    Spitzer, F.: Trans. Am. Math. Soc.198, 191–199 (1974)Google Scholar
  14. 13.
    Davies, E.B.: J. Stat. Phys.18, 161–170 (1978)CrossRefGoogle Scholar
  15. 14.
    Kingman, J.F.C.: J. Appl. Prob.6, 1–18 (1969)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • A. Galves
    • 1
  • C. Kipnis
    • 2
  • C. Marchioro
    • 3
  • E. Presutti
    • 4
  1. 1.Instituto de Matématica e EstatisticaUniversidade de São PauloSão PauloBrazil
  2. 2.Centre de Mathématiques de l'Ecole Polytechnique, Plateau de PalaiseauPalaiseau CedexFrance
  3. 3.Dipartimento di MatematicaLibera Università di TrentoPovo (Trento)Italy
  4. 4.Istituto MatematicoUniversità di RomaRomaItaly

Personalised recommendations