The Journal of Membrane Biology

, Volume 21, Issue 1, pp 291–309 | Cite as

Excess electrical noise during current flow through porous membranes separating ionic solutions

  • Douglas L. Dorset
  • Harvey M. Fishman
Article

Summary

Spectral analysis of electrical noise from various artificial membrane systems suggests that excess noise of anf−n spectral form, wheren is approximately unity, is not primarily a bulk phenomenon simply dependent on the number of charge carriers. Measurements from aqueous and nonaqueous electrolytic resistors, comprised of several different ionic species, show only flat power density spectra under applied currents, even at extreme dilutions. Excess noise off−n form is observed under applied d-c current in single pore membranes, as previously reported, but is also seen in multipore and polymer mesh membranes. Calculations based on single pore membrane noise data are in significant variance with the bulk charge carrier model proposed by Hooge. These observations suggest that such excess noise occurs in conjunction with anisotropic constraints to ion flow.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamczewski, I., Jachym, B. 1966. On the dependence of mobility of ions on the viscosity of dielectric liquids in the range from 5 P to 2×10−3 P.Acta Physiol. Poloni. 30:767Google Scholar
  2. Bean, C.P., Doyle, M.V., Entine, G. 1970. Etching of submicron pores in irradiated mica.J. Appl. Physics. 41:1454Google Scholar
  3. Bennett, W.R. 1960. Electrical Noise. McGraw-Hill Book Co., New York, p. 101Google Scholar
  4. Bernamont, J. 1937. Fluctuations in the resistance of thin films.Proc. Phys. Soc. (Lond.) 49:138Google Scholar
  5. Bess, L. 1953. A possible mechanism for 1/f noise generation in semiconductor filaments.Physical. Rev. 91:1569Google Scholar
  6. Billmeyer, F. W., Jr. 1966. Textbook of Polymer Science. Wiley-Interscience, New YorkGoogle Scholar
  7. Blinks, L. R. 1930. The variation of electrical resistance with applied potential. II. Thin collodion films.J. Gen. Physiol. 14:127Google Scholar
  8. Davies, J. T. 1950. The mechanism of diffusion of ions across a phase boundary and through cell walls.J. Phys. Chem. 54:185Google Scholar
  9. De Felice, L. J., Firth, D. R. 1971. Spontaneous voltage fluctuation in glass microelectrodes.IEEE Trans. Bio-Med. Eng. BME-18:339Google Scholar
  10. De Felice, L. J., Michalides, J. P. L. M. 1972. Electrical noise from synthetic membranes.J. Membrane Biol. 9:261Google Scholar
  11. Derksen, H. E. 1965. Axon membrane voltage fluctuations.Acta Physiol. Pharmacol. Neerl. 13:373PubMedGoogle Scholar
  12. Derksen, H. E., Verveen, A. A. 1966. Fluctuations of resting neural membrane potential.Science 151:1388PubMedGoogle Scholar
  13. Eisenman, G. 1966. The electrochemistry of cation-sensitive glass electrodes.Advanc. Analyt. Chem. Instrum. 4:213Google Scholar
  14. Elford, W. J. 1930. Structure in very permeable collodion gel films and its significance in filtration problems.Proc. Roy. Soc. (London) B106:216Google Scholar
  15. Ellison, A. H., Zisman, W. A. 1954. Wettability studies of nylon, polyethylene terephthalate and polystyrene.J. Phys. Chem. 58:503Google Scholar
  16. Feher, G. 1970. Determination of kinetic parameters from the frequency spectrum of fluctuations.Biophys. Soc. Abstr. p. 118Google Scholar
  17. Feher, G., Weissman, M. 1973. Fluctuation spectroscopy: Determination of the chemical reaction kinetics from the frequency spectrum of fluctuations.Proc. Nat. Acad. Sci. 70:870Google Scholar
  18. Fishman, H. M. 1972. Excess noise from small patches of squid axon membranes.Biophys. Soc. Abstr. p. 119Google Scholar
  19. Fishman, H. M. 1973. Relaxation spectra of potassium channel noise from squid axon membranes.Proc. Nat. Acad. Sci. 70:876PubMedGoogle Scholar
  20. Fishman, H. M. 1975. Noise measurements in axon membranes.Fed. Proc. (In press) Google Scholar
  21. Fishman, H. M., Dorset, D. L. 1973. Comments on “Electrical fluctuation associated with active transport”.Biophys. J. 13:1339PubMedGoogle Scholar
  22. Gzowski, O., Terlecki, J. 1959. A method for measuring the mobility of ions in dielectric liquids.Acta Physica Polon. 18:191Google Scholar
  23. Handel, P. H. 1968a. Turbulence theory for solid state plasmas.Symposium on Turbulence of Fluids and Plasmas, Polytechnic Institute of Brooklyn, p. 381Google Scholar
  24. Handel, P. H. 1968b. Instabilities and turbulence in semi-conductors.Phys. Stat. Sol. 29:299Google Scholar
  25. Handel, P. H. 1971. Turbulence theory for the current carriers in solids and a theory of 1/f noise.Physical Rev. (A) 3:2066Google Scholar
  26. Hill, T. L., Chen, Y. 1972. On the theory of ion transport across the nerve membrane. IV. Noise from open-close kinetics of K+ channels.Biophys. J. 12:948PubMedGoogle Scholar
  27. Hodgkin, A. L., Huxley, A. F. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve.J. Physiol. 117:500PubMedGoogle Scholar
  28. Hooge, F. N. 1969. 1/f noise is no surface effect.Phys. Letters. 29A:139Google Scholar
  29. Hooge, F. N. 1970. 1/f noise in the conductance of ions in aqueous solutions.Phys. Letters 33A:169Google Scholar
  30. Hooge, F. N., Van Dijk, H. J. A., Hoppenbrouwers, A. M. H. 1970. 1/f noise in epitaxial silicon.Philips Res. Repts. 25:81Google Scholar
  31. Hooge, F. N., Gaal, J. L. M. 1971. Fluctuations with a 1/f spectrum in the conductance of ionic solutions and in the voltage of concentration cells.Philips Res. Repts. 26:77Google Scholar
  32. Hooge, F. N., Hoppenbrouwers, A. M. H. 1969a. Contact noise.Phys. Letters 29A:139Google Scholar
  33. Hooge, F. N., Hoppenbrouwers, A. M. H. 1969b. Amplitude distribution of 1/f noise.Physica 42:331Google Scholar
  34. Hooge, F. N., Hoppenbrouwers, A. M. H. 1969c. 1/f noise in continuous gold films.Physica 45:386Google Scholar
  35. Johnson, J. B. 1928. Thermal agitations of electricity in conductors.Physical Rev. 32:97Google Scholar
  36. Leblanc, O. H., Jr. 1959. Electron drift mobility in liquidn-hexane.J. Chem. Phys. 30:1443Google Scholar
  37. Maple, T. G., Bess, L., Gebbie, H. A. 1955. Variation of noise with ambient in germanium filters.J. Appl. Physics 26:490Google Scholar
  38. McWhorter, A. L. 1956. 1/f noise and germanium surface properties.In: Semiconductor Surface Physics. R. H. Kingston, editor. p. 207. University of Pennsylvania Press, Philadelphia, Pa.Google Scholar
  39. Michalides, J. P. L. M., Wallaart, R. A. M., De Felice, L. J. 1973. Electrical noise from PVC-membranes.Pflüg. Arch. 341:97Google Scholar
  40. Montgomery, H. C. 1952. Electrical noise in semiconductors.Bell Syst. Tech. J. 31:950Google Scholar
  41. Nyquist, H. 1928. Thermal agitation of electric charge in conductors.Physical Rev. 32:110Google Scholar
  42. Peachey, L. D. 1958. Thin sections. I. A study of section thickness and physical distortion produced during microtomy.J. Biophys. Biochem. Cytol. 4:233PubMedGoogle Scholar
  43. Pearson, G. I., Montgomery, H. C., Feldman, W. I. 1956. Noise in silicon p-n junction photocells.J. Appl. Physics 27:91Google Scholar
  44. Plavnik, G. M., Sinitsyna, G. M., Vlodavets, I. N. 1966. (Submicroporosity of the condensed structures of poly (vinyl formal) by the small angle X-ray scattering method.)Fiz.-Khim. Mekhan. Dispersnylkh Strucktur, Akad. Nauk SSSR, Sb. Statei., p. 69Google Scholar
  45. Poussart, D. J. M. 1971. Membrane current noise in lobster axon under voltage clamp.Biophys. J. 11:211Google Scholar
  46. Price, P., Walker, R. 1962. Chemical etching of charged particle tracks in solids.J. Appl. Physics 33:3407Google Scholar
  47. Radoslovich, E. W. 1960. The structure of muscovite KAl2(Si3Al)O10(OH2).Acta Crystallogr. 13:919Google Scholar
  48. Rauth, A. M. 1962. The energy loss of electrons in thin films. Ph. D. Thesis. Yale University, New Haven, Conn., p. 24Google Scholar
  49. Richardson, J. M. 1950. The linear theory of fluctuations arising from diffusional mechanisms—An attempt at a theory of contact noise.Bell. Syst. Tech. J. 29:117Google Scholar
  50. Schönfeld, H. 1955. Beitrag zum 1/f-Gesetz beim Rauschen von Halbleitern.Z. Naturf. 10a:291Google Scholar
  51. Siebenga, E., Meyer, S. W. A., Verveen, A. A. 1973. Membrane shot-noise in electrically depolarized nodes of Ranvier.Pflüg. Arch. 341:87Google Scholar
  52. Sollner, K., Abrams, I., Carr, C. W. 1940. The structure of the collodion membrane and its electrical behavior. I. The behavior and properties of commercial collodion.J. Gen. Physiol. 24:467Google Scholar
  53. Stevens, C. F. 1972. Inferences about membrane properties from electrical noise measurements.Biophys. J. 12:1028PubMedGoogle Scholar
  54. Vasilescu, D., Teboul, M., Kranck, H., Gutmann, F. 1974. Electrical noise in aqueous 1-1 electrolytes.Electrochim. Acta 19:181Google Scholar
  55. Watkins, T. B. 1959. 1/f noise in germanium devices.Proc. Phys. Soc. Lond. 73:59Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1975

Authors and Affiliations

  • Douglas L. Dorset
    • 1
  • Harvey M. Fishman
    • 1
  1. 1.Department of Biological SciencesState University of New YorkAlbany

Personalised recommendations