Advertisement

The Journal of Membrane Biology

, Volume 37, Issue 1, pp 347–359 | Cite as

Influence of lithium upon the intracellular potential of frog skin epithelium

  • Wolfram Nagel
Article

Summary

The effect of Li upon the intracellular potential of frog skin (Rana esculenta) was investigated. In the range between 1 and 25mm Li in the epithelial bathing solution, a semilogarithmic linear relationship between [Li] and intracellular potential under short circuit conditions was obtained. The intracellular potential at all [Li] is quantitatively sufficient to explain the previously reported accumulation of Li in the intracellular space of the frog skin epithelium (Leblanc, G. 1972.Pfluegers Arch.337:1) on the basis of a passive entrance step at the outer border. A reduction of the intracellular potential by Li is also observed in the presence of 6mm Na in the epithelial bathing solution. Consequences regarding the mechanism of uptake of Na across the outer border of the frog skin are discussed.

Key words

Frog skin intracellular potential lithium sodium transport amiloride 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aceves, J., Erlij, D. 1971. Sodium transport across the isolated epithelium of the frog skin.J. Physiol. (London) 212:195Google Scholar
  2. Bentley, P.J. 1968. Amiloride: A potent inhibitor of sodium transport across the toad bladder.J. Physiol. (London) 195:317Google Scholar
  3. Biber, T.U.L., Curran, P.E. 1970. Direct measurement of uptake of sodium at the outer surface of the frog skin.J. Gen. Physiol. 56:83PubMedGoogle Scholar
  4. Biber, T.U.L., Sanders, U.L. 1973. Influence of transepithelial potential difference on the sodium uptake at the outer surface of the isolated frog skin.J. Gen. Physiol. 61:529PubMedGoogle Scholar
  5. Candia, O.A., Chiarandini, D.J. 1973. Transport of lithium and rectification by frog skin.Biochim. Biophys. Acta 307:578PubMedGoogle Scholar
  6. Cirne, B., Lindemann, B. 1975. Passive nature of Li and Na transport through the Na-selective membrane of frog skin. p. 66. (Abstr.) V. Internat. Biophys. Congress, CopenhagenGoogle Scholar
  7. Dörge, A., Gehring, K., Nagel, W., Thurau, K. 1974. Location of sodium in frog skin by electron microprobe analysis.Naunyn-Schmiedeberg's Arch. Pharmacol. 281:271CrossRefGoogle Scholar
  8. Dörge, A., Nagel, W. 1970. Effect of amiloride on sodium transport in frog skin. II. Sodium transport pool and unidirectional fluxes.Pfluegers Arch. 321:91CrossRefGoogle Scholar
  9. Eigler, J., Kelter, J., Renner, E. 1967. Wirkungscharakteristika eines neuen Acylguanidins-Amilorid-HCl (MK 870) an der isolierten Haut von Amphibien.Klin. Wochenschr. 14:737CrossRefGoogle Scholar
  10. Hansen, H.H., Zerahn, K. 1964. Concentration of lithium, sodium and potassium in epithelial cells of the isolated frog skin during active transport of lithium.Acta Physiol. Scand 60:189PubMedGoogle Scholar
  11. Helman, S.I., Fisher, R.S. 1976. Localization and determination of the driving force for sodium transport by the frog skin.Fed. Proc. 35:702Google Scholar
  12. Helman, S.I., Fisher, R.S. 1977. Microelectrode studies of the active Na transport pathway of frog skin.J. Gen. Physiol. (in press) Google Scholar
  13. Koefoed-Johnson, V., Ussing, H.H. 1958. The nature of the frog skin potential.Acta Physiol. Scand. 42:298PubMedGoogle Scholar
  14. Leblanc, G. 1972. The mechanism of lithium accumulation in the isolated frog skin epithelium.Pfluegers Arch. 337:1CrossRefGoogle Scholar
  15. Lindley, B.D., Hoshiko, T. 1964. The effects of alkali metal cations and common anions on the frog skin potential.J. Gen. Physiol. 47:749PubMedGoogle Scholar
  16. Morel, F., Leblanc, G. 1975. Transient current changes and Na compartmentalization in frog skin epithelium.Pfluegers Arch. 358:135CrossRefGoogle Scholar
  17. Nagel, W. 1975. IntracellularPD of frog skin epithelium.Pfluegers Arch. 355:R70Google Scholar
  18. Nagel, W. 1976a. Na transport properties of the apical border of the frog skin epithelium.Physiologist 19:308Google Scholar
  19. Nagel, W. 1976b. The intracellular electrical potential profile of the frog skin epithelium.Pfluegers Arch. 365:135CrossRefGoogle Scholar
  20. Nagel, W. 1976c. Intercellular junctions of frog skin epithelial cells.Nature (London) 264:469Google Scholar
  21. Nagel, W. 1977a. Effect of high [K] upon the frog skin intracellular potentials.Pfluegers Arch. 368:R22Google Scholar
  22. Nagel, W. 1977b. The dependency of the electrical potential across the membranes of the frog skin epithelium upon the epithelial [Na].J. Physiol. (London) 269:777Google Scholar
  23. Nagel, W., Helman, S.I. 1977. Evidence for electrogenic transport of Na in frog skin revealed in microelectrode studies.Pfluegers Arch. 368:R22Google Scholar
  24. Reinach, P.S., Candia, O.A., Siegel, G.J. 1975. Lithium transport across isolated frog skin epithelium.J. Membrane Biol. 25:75CrossRefGoogle Scholar
  25. Rick, R., Dörge, A., Nagel, W. 1975. Influx and efflux of sodium at the outer surface of frog skin.J. Membrane Biol. 22:183CrossRefGoogle Scholar
  26. Teorell, T. 1954. Rhythmical potential and impedance variations in isolated frog skin induced by lithium ions.Acta Physiol. Scand. 31:268PubMedGoogle Scholar
  27. Thellier, M., Lasalles, J.-P., Stelz, Th., Hartmann, A., Ayadi, A. 1976. Oscillations de potentiel et de courant électriques transépitheliaux sous l'effet du lithium.C. R. Acad. Sci. Ser. D. 282:2111Google Scholar
  28. Zerahn, K. 1955. Studies on the active transport of lithium in the isolated frog skin.Acta Physiol. Scand. 33:347PubMedGoogle Scholar
  29. Zylber, E.A., Rotunno, C.A., Cereijido, M. 1973. Ion and water balance in isolated epithelial cells of the abdominal skin of the frog Leptodactylus ocellatus.J. Membrane Biol. 13:199CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1977

Authors and Affiliations

  • Wolfram Nagel
    • 1
  1. 1.Department of PhysiologyUniversity of MunichMunich 2Germany

Personalised recommendations